Reflections on the State of Development of Connected and Automated Driving (CAD)

Steven E. Shladover, Sc.D.
California PATH Program
University of California, Berkeley
Ghent, June 18, 2024

Connectivity and Automation

CAD is a Hybrid of 3 Industries

Diversity of:

- Organization cultures
- Priorities
- Investment horizons
- Public images
- Risk tolerance
- Attitudes toward safety

Automated Driving Development Challenges

- Complexity of driving environment
 - Geographic diversity of driving behaviors → scalability?
- Perception technology limitations
- Software development, verification and validation methodology limitations
 - Substituting human engineering errors for driving errors
- High safety requirements → redundancy → cost
 Need to exceed baseline human driving safety:
 - (US): 1 fatal crash in >400 years of 24/7 driving
 - (US): 1 injury crash in 7 years of 24/7 driving
- Competition with electrification for resources

Where Can CAD Systems Operate?

Where Can CAD Systems Operate?

International CAD Contrasts

- Transport policy driven
- Strong public investments
- Automotive OEM priority
- Strong safety regulations

- Priorities differ by ministry
- Emphasis on lower levels of automation, auto OEMs
- Very cautious about safety
- Primitive L4 for rural access

- Private investment driven
- IT industry priority
- Level 4 automation emphasis
- No national regulations

- Industrial policy driven
- Level 4 automation emphasis
- No safety culture

Learning from Early Driverless Deployments

- Testing by drivers → driverless testing → driverless deployments (California permit sequence)
- Distinct niche applications meet distinct challenges
- Interactions with emergency responders
- Infinite number and variety of "corner cases"
- Remote human support via wireless communication
- Diverse public perceptions
- Disregard examples from China
- Lessons for regulations

Public Road Testing in California

- Essential for development → start with test drivers
 - Driver qualifications
 - Driver training
 - Comprehensive reporting on mileage, crashes, driver interventions, near misses, minimal risk maneuvers...
- Driverless testing (with remote human support)
 - Authorize based on data from drivered testing
 - Essential for identifying problems that drivers covered
 - Staged authorization of fleet size increases
 - Comprehensive reporting continuing

Full Deployment on Public Roads

- Approve for specific application and operating conditions based on successful test results
 - Consider ongoing updates that will change behavior and may create new problems
- Engage with local stakeholders regarding potential restrictions on CAD usage
- Inform ADS developers/operators about incidents and road infrastructure changes
- Continue data collection and reporting to monitor effects of updates and unexpected outcomes

Each Niche Application is Different

- No "general" automated driving system
 - Urban (which city?), suburban or rural driving?
 - Motorways or general surface streets?
 - Long-haul, middle mile or local delivery trucking?
 - Ride-hailing or fixed-route passenger service?
- Extensive learning needed to expand or change scope of service and/or ODD
 - Scalability challenge for developers
 - Limits rate of market expansion
 - Approval processes need to recognize this

Emergency Responder Interactions

- Major issues in San Francisco with police, fire and ambulance services
- Data largely anecdotal and incomplete
- ADS not recognizing caution tapes, fire hoses, firefighting scenes
- ADS (unintentionally) blocking access
- City and ADS developer coordination
 - Companies authorizing emergency responders to drive their ADS vehicles
 - City providing real-time incident location data to ADS companies ('no-go' blocks)

Infinite Variety of "Corner Cases"

- Can never compile "complete" collection for ADS training or assessment
 - Comprehensive type approval testing of corner cases is not feasible
 - Cannot "prove" ability of ADS to manage them safely
- Resiliency of response to new conditions will be critical to assessing real-world ADS safety

Remote Human Support

- All Level 4 systems rely on remote human support
 - Remote <u>assistance</u> to understand edge case scenarios, provide Go / NoGo advice, define waypoints
 - Remote <u>driving</u> (but with dubious safety)
 - Significant operating cost burden
- Requires wireless communication (currently 4G or 5G cellular), even for vehicles that do not use CAD
 - Implications of cellular service latencies and disruptions (natural disasters, terrorist events, large special events)?

Diverse Public Perceptions

- General concerns about ADS technology Forbes survey reported Feb. 2024:
 - 25% very untrusting + 21% somewhat untrusting
 - 22% somewhat trusting + 12% very trusting
- Willingness to pay \$5K more for "self-driving" car?
 - 29% very or somewhat willing
 - 52% very or somewhat unwilling
- Labor unions sponsoring state legislation to require a driver in all heavy vehicles with ADS
- More open information sharing needed to earn public trust

Chinese Company ADS Developments

- Strong national push for L4 ADS to enhance industry competitiveness (for industrial policy, not transport)
- Frequent media reports on urban ride-hailing in China
- No meaningful safety regulations
- U.S. ADS industry lobbyists cite "China threat" to fight against U.S. safety regulations
- Multiple Chinese companies testing ADS in California
 - Lack of safety culture and safety cases
 - Poor attention to regulatory reporting requirements
- Not a good model to emulate

Regulating CAD Safety

- Hybrid approach needed for CAD driving behavior neither pure type approval nor self-certification of compliance with specific standards
 - Diversity of applications, ODDs and edge cases makes scenario-based type approval testing questionable
- Emphasize critical reviews of Safety Case and Safety Management System to assess readiness for public deployment
- Good start with EU 2022/1426 of 5 August 2022
 - Narrowed to specific early use cases