KU LEUVEN

A comparison of traditional and transformer-based machine learning techniques for NACEBEL classification of Flemish company websites

Gil Coopmans Ferre Dockx

Promotor: Prof. Dr. Bart Baesens Daily supervisor: Manon Reusens

Statistics Flanders contact: Jens Van de Weygaert

STATISTIEK VLAANDEREN

Problem statement

NACE codes ----

NACEBEL codes

Hierarchical structure

NACE code Type 9XXXX Service 96XXX Other services 960XX Other services 9602X Hair and beauty 96021 Hairdressers

- Useful for:
 - VAT
 - Sector statistics
 - Government support
 - ...

Correct classification is important!

But often wrongly classified

- Human error
- Ambiguitity
- Changes in business activity

Can Machine Learning help?

Literature review

Literature

Predicting NACE codes – previous research

Industry classification based on texts from Dutch company websites (Sinke & Vanthienen (2019))

- Comparing NLP techniques for text classification
- Feature extraction techniques and different models

 \rightarrow .nl

Exploring a knowledge-based approach to predicting NACE codes of enterprises based on web page texts (Kühnemann et al. (2020))

- SVM and Naïve Bayes
- Improve predictive accuracy with knowledgebased features

 \rightarrow .nl

Decisions to be made

- 1. What models to use? (ML vs DL)
- 2. What data to collect? (HTML/JavaScript, homepage, etc.)
- 3. How to clean data? (e.g. what to keep)
- 4. How to pre-process data? (what will we use as input for the models)
- 5. How to train models? (e.g. how long?, what to test?)
- 6. How to evaluate the results?

Methodology

Models

Traditional ML method:

- Logistic regression
 - 'Simple' algorithm
 - Computationally efficient
 - Feature engineering needed
 - Estimates probability of belonging to class

Deep Learning method:

- RobBERT (a pre-trained transformerbased Large Language Model)
 - Complex
 - Computationally expensive
 - Neural Network (transformer-based)
 - Automatic feature extraction
 - Fine-tuning

Research questions

"How does a transformer-based model perform on a high-dimensional multi-class text classification task, compared to a traditional machine learning method?"

"What is the classification performance of a transformer-based model compared to a traditional model on different hierarchy levels of NACEBEL codes?"

Data collection

Web scraping

STATISTIEK VLAANDEREN

360,000 URLs in dataset**

- Only websites available in Dutch
- Only if scraping is allowed
- Only if the URL is still valid
- Only HTML of homepage is scraped

152,302 scraped web pages (raw HTML)

• 27,5% of companies not in StatBel provided Dataset

Linking NACEBEL codes

Scraping

110,372 scraped web pages with NACEBEL code

**The quality of the URL dataset is questionable! → Comparative insights should still be usable

Data collection

Class imbalance

Data cleaning

- Downcasing
- Removing numbers & special characters
- Remove (nearly) empty texts
- Handling duplicates in data
 - Online directories (e.g. 'data.be', 'goudengids.be')
 - Branches (e.g. McDonald's)
 - Mistakes URL dataset
 - → Remove all but one

Applying logistic regression hierarchically

FINAL NACEBEL CODE

e.g. 47512

(Detailhandel in huishoudtextiel en beddengoed in gespecialiseerde winkels)

Logistic regression

PRE-PROCESSING

Stopwords

Remove ⇔ Keep

Tokens

Full words ⇔ Lemmatization ⇔ Stemming ⇔ Character n-grams

Feature extraction technique

TF-IDF ⇔ Word embeddings

Class balancing

Downsampling on first digit ⇔ Class-Weighting ⇔ Neither

→ 38 experiments with logistic regression

FINAL NACEBEL CODE e.g. 47512

(Detailhandel in huishoudtextiel en beddengoed in gespecialiseerde winkels)

Final layer is the classification output e.g. 47512

RobBERT

- Experiment with different setups
 - Number of hidden layers
 - Size

. . .

17

Evaluation

Accuracy

Can be influenced by majority categories

Weighted F1 score

Better for imbalanced dataset

Results

Results Logistic Regression

preprocessing- Feature			Down-	Class-	Final	Final F1	
	Technique	Extraction	Sample	Weighting	Accuracy		
HEURISTIC (dataset 2F) - stop words kept							
27	STEM	TF-IDF	NO	NO	0.3783	0.3359	
28	STEM	TF-IDF	NO	YES	0.3673	0.3577	
20	COPPL (WD IDD	MEG	NO	0.040	0.0000	

Selected benchmark

- → Duplicate heuristic
- → Keeping stopwords
- → Stemming
- → TF-IDF
- → Class-Weighting

Results RobBERT

ID	Batch	Layers	Layer	Freezing	Down	Final	Final
	${\bf Normalization}$		Size	Layers	Sampling	Accuracy	F1
R1	NO	1	768	NO	NO	0.4356	0.3911
R2	YES	1	4096	NO	NO	0.4446	0.4163
R3	YES	1	4096	YES	NO	0.4535	0.4187
R4	YES	1	4096	YES	MED	0.2680	0.2292
R5	YES	1	4096	YES	2MED	0.3273	0.2934
R6	YES	2	4096	NO	NO	0.4322	0.4037
R7	YES	2	4096	YES	NO	0.4420	0.4083

Selected model

- → One hidden layer
- → 4096 nodes
- → No downsampling

Logistic regression vs RobBERT Full NACEBEL code

	FINAL
	ACCURACY
Log reg (28)	0.3673
Robbert (R3)	0.4535
	FINAL
	F1
Log reg (28)	0.3577
Robbert (R3)	0.4187

Logistic regression vs RobBERT

Per digit breakdown

	ACCURACY	- ACCURACY	- ACCURACY	- ACCURACY	- FINAL
	1st DIGIT	2 DIGITS	3 DIGITS	4 DIGITS	ACCURACY
Log reg (28)	0.6285	0.5299	0.4538	0.4064	0.3673
Robbert (R3)	0.7117	0.6131	0.5438	0.4928	0.4535
	F1 -	F1 -	F1 -	F1 -	FINAL
	1st digit	2 DIGITS	3 DIGITS	4 DIGITS	F1
Log reg (28)	0.6417	0.5331	0.4512	0.3999	0.3577
RobBERT (R3)	0.7095	0.6034	0.5223	0.4645	0.4187

- RobBERT outperforms logistic regression
 - All levels
 - All metrics
- Accuracy and F1-score gap increases for RobBERT
 - → Hierarchical implementation advantage of logistic regression
- RobBERT still has more room for improvement

Training effort

Logistic regression

- Between 16 and 60 minutes per experiment (19m for benchmark)
- More pre-processing required
- Trained on Google Colab (cpu)

RobBERT

- Between 2 and 4 hours per experiment
- Trained on Google Colab T4 GPU
- → GPU is more expensive

Conclusion

- RobBERT
 - Best performing
 - Room for improvement
 - Adressing class imbalance
 - Use hierarchy of NACEBEL codes
- Logistic regression
 - Shorter training time
 - Less room for improvement
- → Improve data quality & research deep learning applications further

Questions?