

Statistics Flanders Research Seminar

Estimation Models for the Number of Immigrants with Observational Delay

Master's Programe in Statistics and Data Science European Master of Official Statistics (EMOS)

Lie HONG 2024-May-21 Supervised by Prof. Dr. Katrien Antonio & Dr. Jorre Vannieuwenhuyze

Contents

- (1) Overview of our project
- (2) Data and methods
- (3) Results
- (4) Conclusion

(1) Overview of our project

1-1) Stating phenomena

Russo-Ukrainian War triggered immigrants, since 2022-Feb-24

(1) Overview of our project

1-2) Research goals

- Estimate the weekly and daily arrivals of immigrants
- Evaluate the methods applied to our data
- Unravel the factors influencing administrative delays

1-3) Challenges to overcome

- Big data like structure volume, complexity, errors, ...
- From data preprocessing to model selection
- · Applicability robustness, flexibility, functionalities, nowcasting ...

2-1) Data properties

- · complex 38881 groups, comprised of 69936 immigrants
- · 95.5 % delayed registration
- · 3.813 weeks of delay on average
- · registration: every Saturday

2-2) Methods

- · Main reference Verbelen R. et al. (2022)
- · Borrow wisdom from actuarial science
- Chain Ladder: an industrial standard
- Mack's non-parametric approach & Poisson and negative binomial

2-1) Data properties

2-1) Data properties

2-2) Methods

2-2-1) A brief review

- Main reference Verbelen R. et al. (2022)
- Borrow wisdom from actuarial science
- · Chain Ladder (CL) an industrial standard
- Mack's non-parametric approach & Poisson and negative binomial

2-2-2) Chain Ladder setup

- We need start date s and evaluation date τ, to delineate our observational window
- N_t: total number of the groups that arrived in the tth week
- N^r_t: total number of the groups that arrived in the tth week and registered
- $N_{t}^{r} = N_{td}^{r}$ total number of the groups that arrived in the t^{th} week and registered within the observational window ($d < \tau$)

2-2) Methods

2-2-2) Chain Ladder setup => Mack's CL Cumulative Triang								
		Registration Weeks						
Arrival Week	1	2	3	4	5			
"2022-03-05"	5	15	45	50	50	_ ^		
"2022-03-12"	3	12	30	32		ľ		
"2022-03-17"	3	13	25			l		
"2022-03-24"	5	13				١		
"2022-03-31"	2					ľ		
60 —								
50 ———								
40 ———					—N1d			
30 ———					N2d			
20 ———					N3d			
10					——N4d			
10 ———					—N5d			
0			1	T	ı			

2-2) Methods

2-2-3) Chain Ladder setup => Poisson family | Incremental Triangle

	Registration Weeks								
Arrival Week	1	1 2 3 4 5							
"2022-03-05"	5	3	3	5	2				
"2022-03-12"	10	9	10	8					
"2022-03-17"	30	18	12						
"2022-03-24"	5	2							
"2022-03-31"	0								

Arri	ival Week	Counts	Dev.Week	Other Covariates
	22-03-05"	5	1	
"202	22-03-05"	10	2	External
"202	22-03-05"	30	3	Factors
"202	22-03-05"	5	4	Time Effect
"202	22-03-05"	0	5	
"202	22-03-12"	3	1	
"202	22-03-12"	9	2	or to group our data by regions
"202	22-03-12"	18	3	to use location Information
"202	22-03-12"	2	4	for future analyses
	•••		•••	

3-1) Profile of error counts and error percentage

Selection of the start week and τ to determine the observational window Example of applying Mack's CL to evaluate the ultimate counts error rate

Observational windows: 10, 16, 20, 25, 35, 45 weeks

3-2)
The negative binomial model works the best

Start - 2022-Iviar-00						
Window length = 35 weeks						
Error Ultimate In Window						
Mack	917 (53%)	773 (49%)				
Poisson	917 (53%)	773 (49%)				
Neg. Bi.	882 (51%)	738 (47%)				

Start - 2022 Mar 06

Unobserved 1858 1729

3-2)
The negative binomial model works the best. But

Start = 2022-Mar-06							
Window length = 35 weeks							
Error Ultimate In Window							
Mack	917 (53%)	773 (49%)					
Poisson	917 (53%)	773 (49%)					
Neg. Bi.	882 (51%)	738 (47%)					

Unobserved 1858 1729

3-3) For administrative or policy-making purposes, maybe knowing the patterns of errors distributed is more important

3-3) The ultimate errors are high, but the weekly errors are low, if we applied generalized linear models

Future	Mack		Poisson		Negative binomial	
week	Counts error	Error rate	Counts error	Error rate	Counts error	Error rate
1	-202	-12.74	9	0.54	6	0.36
2	-256	-16.15	-42	-2.67	-40	-2.50
3	-139	-8.77	-78	-4.95	-73	-4.58
4	-174	-10.98	-60	-3.79	-58	-3.66
5	-150	-9.46	-39	-2.49	-37	-2.33
6	-246	-15.52	-59	-3.69	-62	-3.90
7	-127	-8.04	-51	-3.20	-50	-3.14
8	-183	-11.55	-23	-1.42	-21	-1.30
9	-217	-13.67	-23	-1.47	-23	-1.45
10	-157	-9.90	-30	-1.88	-30	-1.91
11	-76	-4.81	-17	-1.08	-16	-1.01
12	-1	-0.04	-23	-1.44	-21	-1.31

3-4) Taking 16 weeks from 2022-Mar-06

Within window error percentage					
Mack	Poisson	Neg. Bin.			
-6.83	1.66	1.06			
-7.99	-0.51	-0.19			
-1.41	-4.76	-4.38			
-4.22	-2.89	-2.35			
-3.02	-2.39	-2.10			
-11.01	0.31	0.28			
-9.85	-3.68	-3.27			
-16.86	-1.18	0.11			
-18.26	2.31	3.88			
-14.46	2.78	3.80			
-6.95	0.79	1.03			
-5.07	1.05	1.11			
-2.78	0.76	0.90			
-3.96	2.96	3.00			
3.47	-3.47	-3.47			

(4) Conclusion

- (1) We can apply generalized linear models to nowcast the weekly arriving groups of immigrants.
- (2) The methodology provided by Verbelen R. et al. (2022) can be extended to automation implementation.
- (3) The factors that affect administrative delays should be further studied.

Statistics Flanders Research Seminar

Thank you for listening

Reference:

Roel Verbelen, Antonio, K., Claeskens, G. & Crevecoeur, J. Modeling the Occurrence of Events Subject to a Reporting Delay via an EM Algorithm. Statistical Science 37, (2022).

Lie HONG 2024-May-21 Supervised by Prof. Dr. Katrien Antonio

& Dr. Jorre Vannieuwenhuyze

3-4) Taking 8 weeks from 2022-Feb-27

Negative binomial				
Counts error	Error rate			
0	0.00			
-15	-0.39			
12	0.30			
-33	-0.85			
-84	-2.19			
-13	-0.34			
151	3.92			
-43	-1.13			

2-2) Methods

2-2-2) Chain Ladder setup => Poisson family | Incremental Triangle

	Registration Weeks									
Arrival Week	1	1 2 3 4 5								
"2022-03-05"	5	3	3	5	2					
"2022-03-12"	10	9	10	8						
"2022-03-17"	30	18	12							
"2022-03-24"	5	2								
"2022-03-31"	0									

