

PFAS in Belgian Industry *« How to stimulate the development of alternatives to PFAS : Presentation of the results »*

Daphné Hoyaux, PhD Federal Public Service of Economy, SMEs, Self-employed & Energy « Tackling PFAS pollution through a pro-active and systemic approach » - 1st February 2024

Health Food Chain Safety Environment

1. Context

Growing concern with the Toxicity of PFAS

Mapping of contaminated sites

- A well-known site of 3M plant in Zwijndrecht
- Contamination of the Drinking Water in several sites in Wallonia
- But much remains to be done

□ In Europe, recent ECHA proposals for Restriction

- PFAS in firefighting foams (request by EC)
- PFAS in all other uses (request by several EU countries)

□ In Belgium, many industrial uses of PFAS

❑ Development of sustainable alternatives
→ Major economic & environmental challenges

2. Objectives of the Study

Identification and characterization of the PFAS in Belgium

Global overview and market segmentation
 Focus on the PFAS uses considered as «essential»

Elaboration of a public support strategy towards the substitution of PFAS by safer alternatives

From a transversal point of view, taking into account the alternatives already available or currently developed in Belgium

3. Methodology

Analysis deepening, relevance for public support

Market preliminary analysis (review by sector/segment)

PFAS market in Belgium

Support for the transition to alternatives

Stakeholder consultation

Public instrument identification

4. PFAS Market Analysis

Sectoral Segmentation – 14 Segments

Batteries

Cables

- □ (Cookware) Excluded
- □ (Cosmetics) Excluded
- □ Fire protection
- Medical Devices
- HVACR : Heating, Ventilation, Air Conditioning & Refrigeration

- Metal Processing
- Paints & Coatings
- Paper & cardboard, including packaging
- **PPP:** Plant Protection Products
- Plastics
- Semiconductors
- TULAC: Textile, Upholstery, Leather, Apparel & Carpet

Belgian PFAS market : 12 different segments without Cosmetic & Cookware

Almost all PFAS Uses & Applications covered

□ Global Estimate of the PFAS uses in Belgium & EEA in 14 segments with Cosmetic & Cookware

PFAS group	EEA (t/y)	Belgium (t/y)
PFAA and PFAA precursors	32 540	976
Fluorinated gases	64 001	1 920
Polymeric PFASs	128 504	3 855
All groups	225 045	6 751

PFAS market :

Medical Devices

Paints & Coatings

Paper & cardboard

Fire protection

Semiconductors

Metal Processing

TULAC

HVACR

Plastics

Cables

Batteries

PPP

- → Heterogeneous industrial contexts
- \rightarrow More or less critical applications
- → More or less mature alternatives to PFAS
- \rightarrow Awareness on PFAS uses
- \rightarrow Economic importance

Criteria Definition for the Comparative Analysis

Criterion	1	2	3	4
PFAS role in the final product: functional importance and technical complexity	PFAS plays a key role in the final application, which is technically complex	PFAS is a secondary component in a technically complex product	PFAS plays a key role in a rather basic, mature application	PFAS is a secondary component in the final product, its role is not central
Final function considered as "essential"	The PFAS added value is basically classified as "comfort"	A deficiency in the final function associated with PFAS would have limited impacts	A deficiency in the final function associated with PFAS would have significant but manageable impacts	PFAS is associated with a function of the final product considered as "essential"
Maturity of alternatives	Some alternatives, tested in an industrial context, meet basic requirements	Some alternatives, partially satisfactory, need adaptations or further developments	Several potential alternatives are identified, none of which is technically satisfactory	No satisfying alternative is available, previous attempts were unsuccessful
Industrial awareness	PFAS uses are well identified by the industry, some alternatives are tested	PFAS uses are well identified by the industry, debates about alternatives are emerging	PFAS uses are identified by the industry, which has a limited knowledge of alternatives	The extent to which PFAS are used is not well known, and knowledge of alternatives is limited
Volumes (Belgium)	Less than 100 t/y	Between 100 and 500 t/y	Between 500 and 1000 t/y	More than 1000 t/y

- PFAS role in the final product : functional importance and technical complexity
 - \rightarrow Numerous Uses in Processes & Products
 - \rightarrow Some cases, PFAS only a secondary role
 - \rightarrow PFAS : Fundamental role in a complex Product

Final function considered as "essential"

→ When Evaluate Consequences of failures : Sanitary, Safety, Economy

Maturity of alternatives

- \rightarrow ECHA Restriction report
- \rightarrow Strictly Technical point of view, NOT Cost

Industrial awareness

- \rightarrow Uses vary according to the industry concerned
- → Prerequisite before considering the awareness of the availability of alternatives.

Volumes

- \rightarrow Estimations detailed in monographies
- \rightarrow Various Uncertainties

Results of Comparative Analysis

Results of Comparative Analysis

PRIORITY LEVELS

VERY HIGHMedical devices

TULAC : Textile, Upholstery, Leather, Apparel & Carpet
 HVACR : Heating, Ventilation, Air Conditioning & Refrigeration

- * Semiconductors
- * Pesticides

5. Public Policies : How to Support the Transition to Alternative

Section sets out the following

1. PFAS substitution at the Belgian and EU levels.

2. Avoiding regrettable substitution.

3. Public policies to accelerate substitution.

4. PFAS alternatives across sectors. 5. PFAs alternatives and policies for priority sectors.

2. Avoiding Regrettable Substitution

- Applications an alternative would be used for
- **Risks of PFAS for this application**
- □ Be balanced against the impact of specific alternative(s)
 - → Comprehensive cost-benefit and/or life cycle analyses environmental, social & economic aspects
- How the switching to alternatives may interact with other regulation
 - \rightarrow Linked to global warming potential or EcoDesign targets
- **Cases with many possible alternatives or avenues for alternatives**
 - \rightarrow Clear understanding of the hierarchy of alternatives
 - \rightarrow Communication of technological readiness levels by the administration
 - → Help unlock the necessary means and support for the potential more desirable substitutes.

3. Public Policies To Accelerate Substitution

Case A - Available alternatives

- → Available and viable substitutes for the relevant applications
- → Require minimal public support
- → Can be further split into cases where the viable alternative is widely or not yet widely used

Case B - Imperfect alternatives/in development

Alternatives that result in significant trade-offs (cost increases or performance drops)
 → Need additional support and/or development
 → Not currenty widely used

Case C - No viable alternatives identified or very little development → Applications with no widely accepted alternatives (or none at all) as of today

Figure 3 : Types of policies for applications with PFAS alternatives (Case A)

Low current levels of use in applications

Policy A1: Increase consumer/producer information levels.

Policy A2: Short term and decreasing over time subsidies for a given share of consumers to switch.

Policy A3: Ensure technical guidance on use of alternatives is widely available and accessible.

Policy A4: Ensure (through trainings or incentives) that there is enough competent staff to use and install alternatives to PFAS where relevant.

High current levels of use in applications

Policy A1: Increase consumer/producer information levels.

Policy A3: Ensure technical guidance on use of alternatives is widely available and accessible.

Policy A5: Place increasing restrictions on PFAS with environmental permits.

Policy A5 likely be implemented at the regional level but could be suggested/coordinated at the federal level

Figure 4 : Types of policies for applications with problematic PFAS alternatives (Case B)

	CAPEX Barrier: Capital expenditure required to bring solution to market	For new installation of alternative / system / unavoidable CAPEX increase Policy B1-1: Subsidies decreasing over time, based on percentage of CAPEX covered, with different criteria for attribution by size of applicant, (automated for domestic small applications, project reviewed for larger scale).	For R&D related CAPEX See performance barriers below.
Alternatives identified but limited	OPEX barrier: Operating expenditure required to run solution	OPEX increase can be reduced Policy B1-2: R&D subsidies to reduce OPEX. Policy B2: Facilitating information exchange or collaborative R&D.	OPEX increase cannot be reduced (and there are no better product alternatives) Policy B1-3: Creating time limited subsidies on basis of usage. Policy B1-4: Where there are exisiting product subsidies, modify them to be more favourable to PFAS- free alternatives.
	Performance barrier (alternative exists but results in signficant drop in performance in key properties)	If R&D is unlikely to reduce the performance gap Policy B1-5: Subsidies (decreasing over time) for switching or identifying functional alternatives (if they exist) instead of product alternatives.	If R&D is likely to reduce the performance gap Policy B4-6: Subsidies for R&D to improve performance. Policy B1: Facilitating information exchange or collaborative R&D. Policy B3: Ensuring private incentives to improve process are optimised (patent protection etc).

Figure 5: Types of policies for applications with no PFAS alternatives (Case C)

All these policies can be supported ` by the following:

Policy C2: Elaboration of priority alternative substances by public entities based on consultations / R&D / specific projects on these for applicable industries (at least for first steps of research).

Policy C4: Subsidies (design depending on what whether public or private R&D is required).

Policy C5: When alternatives are identified, prior to implementing them, detailed cost benefit analyses should be run throughout the supply chain to avoid regrettable substitution.

If the expected time to find viable alternative is long and cannot be compressed further with the policies above.

First, proceed with policies above.

Policy C6: If feasible in shorter time frame than the alternatives above, stimulate the development of systems that reduce PFAS emissions (during production: reduce PFAS emissions; during end of life: ensure lower emissions), so that in fine fewer PFAS contaminated sites.

4. PFAS Alternatives Across Sectors

- Very large range of sectors and applications that use PFAS
 - \rightarrow need specific tailored policies to suit their needs
- ♦ It is important to group applications which can use the same or similar solutions
 → based on consultations with the industry and public bodies

To ensure that policies are designed effectively

- ightarrow applications of PFAS should be carefully grouped by industry
- \rightarrow to reduce duplication of work, without selecting categories that are too broad

Figure to the left : a rough classification of the 12 sectors

- ightarrow to help guide which policies could be applied to each sector
- Cables and semi-conductors are classified in between the red and orange boxes
 - \rightarrow as they appear to be in very early stages of alternatives identification
 - \rightarrow but are more advanced than medical devices

Focus the analysis on the three priority sectors :

Technical textiles

HVACR

Medical devices

ssification of sectors by technological readiness levels, based on Erdyn research

5. PFAS Alternatives and Policies for Priority Sectors

Technical Textiles Sector

Currently NO Alternatives with sufficient oil repellence properties

Policies that could help this sector include :

Assessing the need for personal protective equipment
 potentially adapt new requirements for certain uses
 to reduce the need for PFAS in the short term

Once an alternative is available from the chemicals industry
 Subsidies for testing them could be provided

Organising a collaborative workshop
 to foster the development of alternatives

PFAS Alternatives and Policies in the Context of Priority Sectors

HVACR Sector : Heating, Ventilation, Air Conditioning & Refrigeration
 Many sub applications of PFAS, some with PFAS-free alternatives

Policies that could help this sector include :

- CAPEX and R&D subsidies
- > Collaboration with city planning,
- Stimulation of collaborative R&D/private incentives to innovate
- Ensuring the presence of skilled workers
- > Establishment of prioritisation lists of desirable alternatives

PFAS Alternatives and Policies in the Context of Priority Sectors

Medical Sector

- General lack of knowledge of potential viable alternatives
- Lack of significant collaborative research/information sharing
- Some applications
 the solution will be relatively straightforward
 BUT many where it will be difficult
- Not a clear path of which applications or potential alternatives to stimulate

Policies that could help this sector include :

- ➢ R&D subsidies
- > Stimulation of collaborative R&D/private incentives to innovate
- > Establishment of prioritisation lists of desirable alternatives

> Groups of applications : mutualise some of the steps of research for alternatives

6. CONCLUSIONS

Barriers to the Development Alternatives

Technical and knowledge barriers

Lower performance, safety concerns, skills gap for use.

Competing regulations imposing other demands

For example concerning global warming, EcoDesign, safety requirements.

Additional costs which can be prohibitive

CAPEX (installations, more complex products) or OPEX (operating costs).

Uncertainty as to which PFAS will be banned

When and for what applications; together with which alternatives will be brought in.

Concerns over sharing of innovation results

Potential market power of companies finding viable alternatives).

Lack of centralisation of information / coordination

Reduces flow of information as to potential solution and possible duplication of work.

Course A data and

Prioritisation of Alternatives

□ Establishing a list of common priority requirements of the industry → to help focus research by the chemical and material development industries

Consultation with manufacturers, material and chemical development industries and relevant public bodies

Priorisation of certain streams of research

 \rightarrow this list may also identify overlaps in R&D

Creation of a common list of alternatives with assessments of the full supply chain

Creation of positive list of alternatives to reduce duplication of costs

" PFAS in Belgian Industry – Market Study "

NL: https://economie.fgov.be/nl/themas/ondernemingen/duurzame-economie/duurzameproductie/chemische-stoffen-en-duurzame

FR : <u>https://economie.fgov.be/fr/themes/entreprises/economie-durable/production-</u> <u>durable/substances-chimiques-et</u>

<u>CONTACT</u>: Daphné Hoyaux \rightarrow <u>daphne.hoyaux@economie.fgov.be</u> REACH Helpdesk for Belgium \rightarrow <u>reachinfo@economie.fgov.be</u>