

PFAS Treatment: The Current State of Play

Tackling PFAS Pollution, Antwerp, Belgium

Rosa Gwinn, Global Technical PFAS Leader February 2, 2024

aecom.com

Delivering a better world

Agenda

Global Perspective ✤ Global Occurrence Regulatory Approaches **Treatment Concepts** Site-Specific Considerations Technology Readiness Treatment Trains **Achieving Remediation Solutions**

🔶 aecom.com

Comparison of US - AUS - EU Regulatory Approaches

Regulatory Action	US	****	EU		AUS
Overarching philosophy	Process driven regulatory response to manufacturing and environmental risks	Conservative, direct action on source reduction, focused on sustainability		Wholistic evaluation of exposures and solutions focused	
Inventory & Restrictions on Importation /Manufacture/ Use	USEPA Toxic Release Inventory Toxic Substances Control Act (TSCA)	Registration, Evaluation, Authorisation & Restriction of Chemicals (REACH) Regulations		Recommendation for alternatives	
Organizational Engagement	Federal/State Intergovernmental	Interjurisdictional		Federal/State Intergovernmental	
Exposure-Based Approaches for: - Food Ingestion	Agency for Toxic Substances and Disease Registry (ATSDR) 2018 Tolerable Daily Intake PFOS - 20 ng/kg bw/day PFOA - 20 ng/kg bw/day	European Food Safety Authority (EFSA) 2020 Tolerable Weekly Intake PFOS, PFOA, PFHxS and PFNA 4.4 ng/kg body weight per week		Food Safety Australia and New Zealand (FSANZ) 2017 Tolerable Daily Intake PFOS+PFHxS - 20 ng/kg bw/day PFOA - 160 ng/kg bw/day	
- Drinking Water	PFOS & PFOA < 4 ng/L PFNA, PFHxS, PFBS, GenX Σ HI = 1.0	Σ20PFAS > 100 ng/L		PFOS - 70 ng/L PFOA – 560	ng/L
	Individual States – compounds and criteria vary	ng/kg bw= nanogram per kilogram ng/L = nanogram per liter		body weight	

(→) aecom.com

Site-Specific Considerations

Nature of PFAS release Point of compliance Treatment objectives Technology considerations

- Target medium (soil, water)
- In situ or ex situ
- Commercial readiness
 Engineering constraints

Technology Readiness Level Advancement

Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf

Status of PFAS Treatment Technologies

Soil/ Solid	In-Situ	Ex-situ	Mechanism	Readiness
Incineration		✓	Destruction	
Soil Washing		✓	Separation	
Ballmilling		✓	Destruction	
Sorption and Stabilization	✓	✓	Separation	
Thermal Desorption / Smoldering		\checkmark	Separation	
Water/ Liquid	In-Situ	Ex-situ	Mechanism	Readiness
Incineration		\checkmark	Destruction	
Ion Exchange (IX)/ Regenerable IX		\checkmark	Separation	
Reverse Osmosis/ Nanofiltration		\checkmark	Separation	
Foam Fractionation		\checkmark	Separation/Concentration	
Granular Activated Carbon		\checkmark	Separation	
Colloidal Activated Carbon	\checkmark		Separation	
Supercritical Water Oxidation (SCWO)		 ✓ 	Destruction	
Plasma		\checkmark	Destruction	
Electrochemical Oxidation		✓	Destruction	
Alkaline Hydrothermal Reaction (HALT)		\checkmark	Destruction	
Biochar	\checkmark	✓	Separation	
Novel Sorbents (Regenerable)		\checkmark	Separation/Concentration	
Zeolite/ Clay Mineral	\checkmark	\checkmark	Separation	
Chemical Oxidation	\checkmark	 ✓ 	Destruction	
Biodegradation	\checkmark	\checkmark	Destruction	
Coagulation/Flocculation		 ✓ 	Separation/Concentration	
Sonication		\checkmark	Destruction	
Zero Valent Iron (ZVI)/ Doped ZVI	✓	✓	Destruction	

Commercially available

Field demonstrations ongoing

Effectiveness being tested

Adapted from Table 21-1 https://pfas-1.itrcweb.org/

Note: Short chain PFAA and precursor treatment are not yet fully evaluated

ecom.com

Treatment Approach – Add Destruction for PFAS-free Solution

Achieving Viable PFAS Remediation Solutions

Protect human health and the environment Identify targeted Highly Worrying Substances Identify appropriate treatment end goals

Research, develop and demonstrate technology

- Flanders: KIS aka Knowledge Center for Innovative Remediation
- European Commission: <u>Horizon Europe</u> and <u>LIFE</u>
- US DOD: <u>SERDP</u> ESTCP, branch-led demonstrations
- US EPA: PFAS research grants
- Australian Government: <u>PFAS Research Program</u>

DOD – Department of Defense EPA – Environmental Protection Agency ESTCP – Environmental Security Technology Certification Program SERDP – Strategic Environmental Research and Development Program KIS - Kenniscentrum Innovatieve Saneringstechnieken

	Ecotoxicity of Mixtures	Analytical Methods for Total PFAS in PFAS-free AFFF	Concentration Technologies
	Ecotoxicity in the Marine Environment	AFFF Impacted Concrete and Asphalt	Analytical and Environmental Sampling Methods
	Ecotoxicity & Risk in Avian Spaces	Stormwater Management	Destructive Treatment Processes
	PFAS-Impacted Material Treatment	Transformation in Soil and Groundwater	Fate and Transport
Amendments for In Situ Groundwater Remediation	PFAS-Free Fire Suppressant Enhancements	PFAS-Free Firefighting Agents Performance	Self-Assembly Behavior of PFAS
Thermal Destructive Technologies	Thermal Degradation of Polymeric PFAS in Munitions	PFAS-Free Firefighting Agents Testing	Thermal Destructive Processes
2021	2022	2023	2024
Ex Situ Thermal Treatment	PFAS-Impacted Material Treatment	PFAS-Impacted Material Treatment	
Monitoring and Characterization	Monitoring and Characterization	Monitoring and Characterization	
In Situ Treatment	In Situ Treatment	In Situ Treatment	
Ex Situ Chemical Reduction	Demonstration of PFAS-Free Formulations		
Nanofiltration and			

IDENTIFY. RESOLVE.

THANK YOU.

Rosa Gwinn, PhD, PG rosa.gwinn@aecom.com

DEVELOPING TECHNOLOGIES – LIQUIDS AND SOLIDS

Adsorption	 Biochar Coated Sand Hydrogels and Fluorogels Alkaline Hydrothermal Reaction 	
Treatment	 Redox Manipulation Plasma Technology Electrochemical 	
Oxidation	 Photolysis Sonochemical/Ultrasound Activated Persulfate Catalyzed Hydrogen Peroxide Ozone High Energy Electron Beam 	
Physical Separation	Precipitation/Coagulation/Flocculation	
Reduction	 Alkaline Metal Reduction Solvated Electrons Zero Valent Iron/Doped ZVI 	
Thermal Treatment	Thermal Desorption/In Situ Smoldering	
Transformation	Biodegradation	

