Beamm : online, open-access tax-benefit microsimulation modeling

Tom Truyts Hugues Annoye

CAPE - UCLouvain Saint-Louis - Bruxelles

October 23rd - Statistiek Vlaanderen

CAPE ?

- Center for Applied Public Economics
 - At UCLouvain Saint-Louis Bruxelles
 - Youngest research center at USLB \rightarrow founded 2019
 - 20-25 researchers \rightarrow economics, statistics, mathematics...

CAPE ?

- Center for Applied Public Economics
 - At UCLouvain Saint-Louis Bruxelles
 - Youngest research center at USLB \rightarrow founded 2019
 - 20-25 researchers \rightarrow economics, statistics, mathematics...
- Objectives CAPE
 - Principal objective : Beamm project
 - Secondary objective : scientific research + policy support \rightarrow public finance + public policy evaluation

Team beamm

Professors :

- Gilles Grandjean : Professor of Public Economics
- Tom Truyts : Professor of Public Economics
- Cedric Heuchenne : Professor of Statistics and Quantitative Methods
- Koen Declercq : Professor of quantitative economics, labor economics
- Hélène Latzer : Professor of macro-econonomics, policy evaluation

Post-doctoral researchers

- Francesco Pascucci : statistics, Beamm.brussels
- Alexandre Jacquemain : Inequality analysis, statistics
- (Elisabeth Leduc : Labor and education, public policy evaluation)

Doctoral students :

- Arnaud Dorsimont : Macroeconomic effects of fiscal policy
- Hugues Annoye : Machine learning, statistics
- Carlos Rodriguez Ameal : Machine learning, statistics
- Jean Paul Madrigal Rodriguez : Transport-beamm, transport economics
- Rory Green : Beamm, labour market
- David J. Sonnewald : Beamm.brussels labor market modelling
- Audric De Bevere : Consumption modelling, carbon taxes
- Astrid Adam : Transport-beamm.brussels transport economics
- Daniel Coppens d'Eeckenbrugge : ETR, progressivity, redistribution
- (Tom Van Zeebroeck : tax design and family dynamics)
- François Meuwissen : Tax design, environmental economics
- Soufiane Amzur : Social policy, poverty
- Léa Jacquet : Tax design and family dynamics
- Mathilde Pourtois : labor market, public policy evaluation
- + Research associates : Willem Sas, Malka Guillot

Today's menu

1. Beamm : motivation and intro

- 2. Presentation beamm : model
- 3. Next steps

Beamm.brussels:motivation

- "No taxation without representation"
- How to raise taxes, how to redistribute → cornerstones of role state & democracy

Beamm.brussels:motivation

• BUT : assessing taxes, benefits, public policies = difficult !

Beamm.brussels : motivation

- BUT : assessing taxes, benefits, public policies = difficult !
- technicality, institutional complexity, lack of accessible data & analytical skills
 - \rightarrow difficult to assess impact, see full picture
 - \rightarrow for policy makers, civil society, citizens
 - \rightarrow weakens democratic debate, hinders efficient policy making

• Belgian Arithmetic Microsimulation Model

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model
- Micro-simulation model : <u>simulate</u> tax-benefit system for at <u>micro</u>-level of individual citizens/households in representative sample of population

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model
- Micro-simulation model : <u>simulate</u> tax-benefit system for at <u>micro-level</u> of individual citizens/households in representative sample of population
- Tax-benefit : comprehensive and detailed model of taxes and social contributions and benefits \rightarrow households

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model
- Micro-simulation model : <u>simulate</u> tax-benefit system for at <u>micro-level</u> of individual citizens/households in representative sample of population
- Tax-benefit : comprehensive and detailed model of taxes and social contributions and benefits \rightarrow households
- Online : available on cloud servers \rightarrow on fictitious data

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model
- Micro-simulation model : <u>simulate</u> tax-benefit system for at <u>micro</u>-level of individual citizens/households in representative sample of population
- Tax-benefit : comprehensive and detailed model of taxes and social contributions and benefits \rightarrow households
- Online : available on cloud servers \rightarrow on fictitious data
- **Open access** : easy graphical user interface, fiscal alphabetization, community

- Belgian Arithmetic Microsimulation Model
- Beamm = an online, open-access tax-benefit micro-simulation model
- Micro-simulation model : <u>simulate</u> tax-benefit system for at <u>micro</u>-level of individual citizens/households in representative sample of population
- Tax-benefit : comprehensive and detailed model of taxes and social contributions and benefits \rightarrow households
- Online : available on cloud servers \rightarrow on fictitious data
- **Open access** : easy graphical user interface, fiscal alphabetization, community
- Beamm → 21th century technology for detailed & reliable impact assessments of public policy reforms, freely available to policy makers, civil society, citizens, media...

Today's menu

- 1. Beamm : motivation and intro
- 2. Presentation beamm : model
- 3. Next steps

$Model \ logic$

• Data = central to project \rightarrow mix administrative + survey data

- Data = central to project \rightarrow mix administrative + survey data
- Administrative data : Demobel, Population census, IPCAL, vehicle data + social secretariate

- Data = central to project \rightarrow mix administrative + survey data
- Administrative data : Demobel, Population census, IPCAL, vehicle data + social secretariate
- Surveys : HBS, EU-SILC, LFS, HFCS, Beldam, Monitor, Energy Consumption Survey, HETUS, Mobility Plans, etc.

- Data = central to project \rightarrow mix administrative + survey data
- Administrative data : Demobel, Population census, IPCAL, vehicle data + social secretariate
- Surveys : HBS, EU-SILC, LFS, HFCS, Beldam, Monitor, Energy Consumption Survey, HETUS, Mobility Plans, etc.
- <u>Challenge 1</u> : How to combine information different anonymous micro-datasets ?

- Data = central to project \rightarrow mix administrative + survey data
- Administrative data : Demobel, Population census, IPCAL, vehicle data + social secretariate
- Surveys : HBS, EU-SILC, LFS, HFCS, Beldam, Monitor, Energy Consumption Survey, HETUS, Mobility Plans, etc.
- <u>Challenge 1</u> : How to combine information different anonymous micro-datasets ?
- <u>Challenge</u> 2 : How to use highly sensitive data in online applications ?

- Data = central to project \rightarrow mix administrative + survey data
- Administrative data : Demobel, Population census, IPCAL, vehicle data + social secretariate
- Surveys : HBS, EU-SILC, LFS, HFCS, Beldam, Monitor, Energy Consumption Survey, HETUS, Mobility Plans, etc.
- <u>Challenge 1</u> : How to combine information different anonymous micro-datasets ?
- <u>Challenge 2</u> : How to use highly sensitive data in online applications ?
- Solution : machine learning algorithms AI
 - Statistical matching \rightarrow Statistically correct at aggregate level fictitious at individual level
 - GAN : generation of 100% fictitious but very realistic data

- Statistical matching \rightarrow Development machine learning algorithms Al
 - (Kernel Canonical Correlation Analysis, Super-Organizing Maps and Autoencoders-Canonical Correlation Analysis)
 - Statistical matching \rightarrow Statistically correct at aggregate level fictitious at individual level

• Generation fictitious datasets : Wasserstein Generative Adversarial Networks (WGAN)

Results : Statistical matching

Measure	KCCA	A-CCA	Super-OM	CCA	MMLP	HD	REG
RwsMSE aver. cont. var.	0.60	0.64	0.62	0.63	0.63	1.23	0.58
RwsMSE aver. cat. var	0.95	0.94	0.95	0.94	0.90	1.03	0.87
RwsMSE aver. all var.	0.87	0.87	0.87	0.86	0.83	1.08	0.80
Multivariate R ² (Jones)	0.63	0.58	0.59	0.59	0.58	-1.05	0.64
Average $\widetilde{\mathrm{CVM}}$ NC	1.18	1.17	2.43	1.78	3.06	0.67	9.85
Average $\widetilde{\mathrm{CVM}}$ Mixed	0.67	0.64	1.39	0.94	1.67	0.82	5.42

 $Table - {\sf Results} \ ({\sf average over five folds}) \ of the different statistical matching techniques applied to the SILC dataset only. KCCA : Kernel Canonical Correlation Analysis; A-CCA : Autoencoders Canonical Correlation Analysis; Super-OM : Super organizing maps; CCA : Canonical Correlation Analysis; MMLP : Multi-output Multilayer Perceptron; HD : Distance Hot-deck; REG : Multi-output regression. aver. cont. var., average for all continuous variables; aver. cat. var., average for all categorical variables;$

Results : Generation fictitious datasets

• Here we can find the results for the validation set for each method using the best hyperparameters.

	WGAN	WGAN	SDV
	with GP	with WC	(CopulaGAN) ¹
Wasserstein distance	5.6116	6.5685	8.352
Relative difference of the radius of a SVDD	0.00098	0.00652	0.01654
Time ²	2h	2h	25h

• The absolute value of the difference of correlations between all the variables is for more than 90% of the couples of variables smaller for WGAN with GP than for SDV (CopulaGAN).

beamm

^{1.} SDV is a python package that provides functions to create synthetic datasets. CopulaGAN is one of their most advanced functions that combines GAN models with Copulas.

^{2.} for one combination of hyperparameters

Step 2 : projecting data

Step 2 : Nowcasting/forecasting data

• Problem : data reflect situation in past, project evaluation now/future

$Step \ 2$: Nowcasting/forecasting data

- Problem : data reflect situation in past, project evaluation now/future
- Solution : reweighting/uprating data in function of projections Federal Planning Bureau
 - demographic
 - economic

$Step \ 2$: Nowcasting/forecasting data

- Problem : data reflect situation in past, project evaluation now/future
- Solution : reweighting/uprating data in function of projections Federal Planning Bureau
 - demographic
 - economic
- (Work-in-progress \rightarrow now : Fantasi-D, AI later)

Step 3 : micro-simulation Model

Step 3 : tax-benefit micro-simulation

• Simulating the rules of the tax-benefit system for each individual/household

$Step \ 3: tax-benefit \ micro-simulation$

- Simulating the rules of the tax-benefit system for each individual/household
- Scope :
 - Taxes/contributions : PIT (Fantasi), Social Security Contributions, VAT & excise duties, Inheritance taxes, Road/car taxes, Property taxes, Investment income taxes, Gift taxes
 - <u>Benefits</u> : birth allowance, <u>unemployment benefits</u>, income support, child benefits, <u>pensions</u>, parental leave

Step 3 : tax-benefit micro-simulation

- Simulating the rules of the tax-benefit system for each individual/household
- Scope :
 - <u>Taxes</u>/contributions : PIT (Fantasi), <u>Social Security</u> <u>Contributions</u>, VAT & excise duties, Inheritance taxes, Road/car taxes, Property taxes, Investment income taxes, Gift taxes
 - Benefits : birth allowance, unemployment benefits, income support, child benefits, pensions, parental leave
 - Polyvalent platform \rightarrow ad hoc instruments in function of projects

Step 3 : tax-benefit micro-simulation

- Simulating the rules of the tax-benefit system for each individual/household
- Scope :
 - <u>Taxes</u>/contributions : PIT (Fantasi), <u>Social Security</u> <u>Contributions</u>, VAT & excise duties, Inheritance taxes, Road/car taxes, Property taxes, Investment income taxes, Gift taxes
 - Benefits : birth allowance, unemployment benefits, income support, child benefits, pensions, parental leave
 - Polyvalent platform \rightarrow ad hoc instruments in function of projects
- Documentation tax-benefit system \rightarrow plan : integration figures from data

$Step \ 3: tax-benefit \ micro-simulation$

• Online interface

- Allow users to specify tax-benefit reforms
- Present analysis & visualization of impact reform
- All developed/managed in R

$Step \ 3: tax-benefit \ micro-simulation$

• Online interface

- Allow users to specify tax-benefit reforms
- Present analysis & visualization of impact reform
- All developed/managed in R
- Family of online interfaces : running on same core model, different focus/scope
 - Beamm.brussels, Beamm.be, transport-beamm.brussels, transport-beamm.be, social-beamm etc.

Step 3 : tax-benefit micro-simulation

• Online interface

- Allow users to specify tax-benefit reforms
- Present analysis & visualization of impact reform
- All developed/managed in R
- Family of online interfaces : running on same core model, different focus/scope
 - Beamm.brussels, Beamm.be, transport-beamm.brussels, transport-beamm.be, social-beamm etc.
- Server side
 - Public cloud server \rightarrow kubernetes cluster to dynamically adapt server capacity

🚍 beamm

beamm.brussets Home SIMUL	LATION BEAMM CONTACT
Acknowledgments	Chapter 6 Maternity Leave
1 Child Benefits	
2 Gift Tax	Maternity leave benefit (moederschapsrust uitkering / prestations de maternité) is a benefit available to all new mothers. Different benefit schemes exist depending on whether the woman is employed.
9 Income Support	unemployed or self-employed. Employed and unemployed women are eligible for the benefit if they
a income support	have worked at least 120 days in the six months prior to applying for the benefit and have paid
4 Inheritance Tax	days. If the mother has a part-time contract, she has to have worked at least 400 hours in the last
5 Investment income	eighteen months. Self-employed mothers are only eligible if they have paid two quarterly social
6 Maternity Leave	security contributions.
6.1 Modeling Assumptions	Employed and unemployed mothers are granted fifteen weeks of leave, of which at most six weeks
6.2 Module Input	the expected date of birth. If the birth takes place before the expected date of birth, the days
wa mount mpar	between the actual and expected date of birth are lost. After the birth, the maternity leave has to
6.3 Module output	last for at least nine weeks. If more than one child is born, the maternity leave period is increased by four weeks, of which two can be taken before the hirth
6.4 References	Puring the first thirty doug of their logue, employed methods reading 90% of their space dely upon
7 Pension System	The gross daily wage is calculated based on a six-day working week and the benefit amount is paid
8 Real property	for six days per week. After the thirtieth day, they receive 75% of their gross daily wage, which is
9 Social Security Contributions - Employees and Em	limited to the amount shown in Table 6.1.
10 Social Security Contributions - Special	Table 6.1: Maximum daily wage used for maternity leave benefit calculation
to docal decurry controlitorions - opecial	Type Component 2016 2017 2018 2019 2020
11 Papiel Papurity Capitally diama Pall appropriate	Payment Max. daily wage 135.91 130.03 139.74 142.53 144.10
Tradua acomy contributions - activen proyed	manager monoragene (1.1178 1.1178 1.1179 1.1179
12 Social Security Contributions - Non-Labour Income	Taxation SIC no no no no

		🗎 beamm.b	orussels 🕹 🕙 🖞 + 🖻		
ne Simulation			Fediris - Workshop 2		
Child Benefits	The 'Principal amount' is equal to (1) the basic tax due on the Aggregate Taxable Income minus (2) the tax reduction implied by the tax-exempt income amount. (3) the tax reduction for realocement income and (4) the tax reduction				
Gift Tax	for foreign income.				
Income Support	Select a computation step:				
Inheritance Tax	1. Computation of the basic tax				
Investment Income	The computation of the basic tax uses a progressive tax rate, meaning that an indivual's total Aggregate Taxable Income will be split in segments, and that a different tax rate will be applied to each segment. More precisely, the				
Maternity Leave	applicable tax rate will	be higher for higher i	income segments.		
Pension System	From (€)	To (€)	Tax Rate		
Real Property	0	11070 0	0,25 0		
VAT and Excise Duties	11070,01	12720 0	0,3 0		
Car Taxation	12720,01	21190 0	0,4 0		
Personal Income Tax					
Tax Calculation:	21190,01	38830 0	0,45 0		
Determination of the tax base	38830,01		0,5 0		
Principal Amount	Computation of	f the basic tax: a	an example		

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions
- Labor market modelling : RuRo model
 - Collaboration with KU Leuven (team André Decoster)
 - Predicting labor market responses to tax-benefit reforms

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions
- Labor market modelling : RuRo model
 - Collaboration with KU Leuven (team André Decoster)
 - Predicting labor market responses to tax-benefit reforms
- Consumption modelling : Demand systems modelling
 - exploring hybrid AI & structural equations methodologies...

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions
- Labor market modelling : RuRo model
 - Collaboration with KU Leuven (team André Decoster)
 - Predicting labor market responses to tax-benefit reforms
- Consumption modelling : Demand systems modelling
 - exploring hybrid AI & structural equations methodologies...
- Transport modelling
 - Integration transport models : TML, U.Liège, KU Leuven

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions
- Labor market modelling : RuRo model
 - Collaboration with KU Leuven (team André Decoster)
 - Predicting labor market responses to tax-benefit reforms
- Consumption modelling : Demand systems modelling
 - exploring hybrid AI & structural equations methodologies...
- Transport modelling
 - Integration transport models : TML, U.Liège, KU Leuven
- Family dynamics (TAXFAM project)
 - Fiscal unit : individual vs couple

- Microsimulation as such \rightarrow only 'day after' effect = no behavioral reactions
- Labor market modelling : RuRo model
 - Collaboration with KU Leuven (team André Decoster)
 - Predicting labor market responses to tax-benefit reforms
- Consumption modelling : Demand systems modelling
 - exploring hybrid AI & structural equations methodologies...
- Transport modelling

• ...

- Integration transport models : TML, U.Liège, KU Leuven
- Family dynamics (TAXFAM project)
 - Fiscal unit : individual vs couple

Today's menu

- 1. Beamm : motivation and intro
- 2. Presentation beamm : model
- 3. Next steps

- Co-creation with key actors
- Beamm.brussels : Test version online \rightarrow validation, error tracking, finalizing interface

- Co-creation with key actors
- Beamm.brussels : Test version online \rightarrow validation, error tracking, finalizing interface
- Creation video content, social media, tour of key users (cabinets, administrations, civil society platforms...)

- Co-creation with key actors
- Beamm.brussels : Test version online \rightarrow validation, error tracking, finalizing interface
- Creation video content, social media, tour of key users (cabinets, administrations, civil society platforms...)
- Beamm launch party this winter

- Co-creation with key actors
- Beamm.brussels : Test version online \rightarrow validation, error tracking, finalizing interface
- Creation video content, social media, tour of key users (cabinets, administrations, civil society platforms...)
- Beamm launch party this winter
- Sister platforms
 - transport-beamm.brussels \rightarrow focus on mobility
 - beamm.be \rightarrow generic model for Belgium
 - social-beamm, etc.

- Co-creation with key actors
- Beamm.brussels : Test version online \rightarrow validation, error tracking, finalizing interface
- Creation video content, social media, tour of key users (cabinets, administrations, civil society platforms...)
- Beamm launch party this winter
- Sister platforms
 - transport-beamm.brussels \rightarrow focus on mobility
 - beamm.be \rightarrow generic model for Belgium
 - social-beamm, etc.
- Beamm = long term project → continued investment/development over coming years/decades..

Beamm Trinity

And finally ..

• Smarter together than alone...

- Open for collaboration
- Beamm = building block
- Longer term : networked simulation platforms

And finally..

• Smarter together than alone...

- Open for collaboration
- Beamm = building block
- Longer term : networked simulation platforms
- In that light : Vlaamse Overheid and CAPE
 - Open for further collaboration, reciprocity
 - Participate or present in our workshops?
 - Feel free to reach out !

Questions? Interested?

Contact us :

tom.truyts@uclouvain.be

cape-slb@uclouvain.be

Sites : Tom Truyts, CAPE

- Mobility : Smartmove (BCR), Fiscal instruments towards greening mobility (Flanders), Societal value public transport
 - Distributional analysis
 - Estimation of behavioral responses
 - Revenue recycling

- Mobility : Smartmove (BCR), Fiscal instruments towards greening mobility (Flanders), Societal value public transport
 - Distributional analysis
 - Estimation of behavioral responses
 - Revenue recycling
- Tax design : personal income tax
 - Towards optimal personal income tax \rightarrow trade off equity-efficiency
 - Calculation elasticity of taxable income, calculation elasticity labor supply

- Mobility : Smartmove (BCR), Fiscal instruments towards greening mobility (Flanders), Societal value public transport
 - Distributional analysis
 - Estimation of behavioral responses
 - Revenue recycling
- Tax design : personal income tax
 - Towards optimal personal income tax \rightarrow trade off equity-efficiency
 - Calculation elasticity of taxable income, calculation elasticity labor supply
- Socio-economic impact carbon taxes
 - Distributional impact, compensating measures,
 - Estimation behavioral reactions \rightarrow consumption and investment in durables

- Tax design and family dynamics TAXFAM ARC project
 - Impact assessment, budgetary costs reform scenarios, distributional impact...
 - What is the fiscal unit : household vs individual?
 - Costs of living couples vs singles \rightarrow fairness fiscal unit
 - Behavioral models of household dynamics : childcare and labor supply, divorce

- Tax design and family dynamics TAXFAM ARC project
 - Impact assessment, budgetary costs reform scenarios, distributional impact...
 - What is the fiscal unit : household vs individual?
 - Costs of living couples vs singles \rightarrow fairness fiscal unit
 - Behavioral models of household dynamics : childcare and labor supply, divorce
- Fantasi project
 - Development Fantasi microsimulation model Personal Income Tax
 - With Financiën en Begroting, Vlaamse Overheid

- Tax design and family dynamics TAXFAM ARC project
 - Impact assessment, budgetary costs reform scenarios, distributional impact...
 - What is the fiscal unit : household vs individual?
 - Costs of living couples vs singles \rightarrow fairness fiscal unit
 - Behavioral models of household dynamics : childcare and labor supply, divorce
- Fantasi project
 - Development Fantasi microsimulation model Personal Income Tax
 - With Financiën en Begroting, Vlaamse Overheid
- Calculation Interregional Financial Transfers
 - For Treasury Flanders

- Tax design and family dynamics TAXFAM ARC project
 - Impact assessment, budgetary costs reform scenarios, distributional impact...
 - What is the fiscal unit : household vs individual?
 - Costs of living couples vs singles \rightarrow fairness fiscal unit
 - Behavioral models of household dynamics : childcare and labor supply, divorce
- Fantasi project
 - Development Fantasi microsimulation model Personal Income Tax
 - With Financiën en Begroting, Vlaamse Overheid
- Calculation Interregional Financial Transfers
 - For Treasury Flanders
- (IBSA-BISA support, Spending reviews, budget predictions; participatory democracy,...)

