
Predicting the Propensity 
to Move Using Public 
Register Data

 

Academic year 2022-2023

Supervisor: Prof. Seppe vanden Broucke 
Affiliation KU Leuven 

Mentor: Michael Reusens 
Affiliation Statistics Flanders

Armen ABAGYAN 

FACULTY OF SCIENCE

Thesis presented in


fulfillment of the requirements


for the degree of Master of Science 


in Statistics and Data Science

r0823936 



3UHIDFH

7KH�UHVHDUFK�SUHVHQWHG�IRU�WKLV�WKHVLV�ZDV�FRQGXFWHG�ZLWKLQ�WKH�IUDPHZRUN�RI�D
FROODERUDWLRQ�EHWZHHQ�.8�/HXYHQ�DQG�6WDWLVWLFV�)ODQGHUV��7KH�JRDO�RI�WKH�UHVHDUFK�ZDV�WR
GHYHORS�D�SUHGLFWLYH�PRGHO�IRU�PRYLQJ�SURSHQVLW\�XVLQJ�%HOJLDQ�SXEOLF�UHJLVWHU�GDWD�DQG
PDFKLQH�OHDUQLQJ�DOJRULWKPV��7KH�ZLGHU�LPSOLFDWLRQV�IRU�WKH�VWXG\�UHODWH�WR�WKH�LQFUHDVLQJ
XVH�RI�VHFRQGDU\�VRXUFHV�LQ�UHVHDUFK��DQG�WKH�VKLIW�DZD\�IURP�SULPDU\�VRXUFHV�

,�ZRXOG�OLNH�WR�SHUVRQDOO\�H[WHQG�P\�JUDWLWXGH�WR�P\�VXSHUYLVRU�3URIHVVRU�YDQGHQ�%URXFNH
DQG�P\�PHQWRU�0LFKDHO�5HXVHQV��ZKR�ERWK�SURYLGHG�PH�ZLWK�WKH�QHFHVVDU\�JXLGDQFH
ZLWKRXW�ZKLFK�WKLV�WKHVLV�ZRXOG�QRW�KDYH�EHHQ�SRVVLEOH��,�DP�DOVR�GHHSO\�LQGHEWHG�WR�PDQ\
DW�6WDWLVWLFV�)ODQGHUV�ZKR�SURYLGHG�LPPHDVXUDEOH�VXSSRUW��GLUHFWLRQ��DQG�HQFRXUDJHPHQW
WKURXJKRXW�WKH�PRUH�FKDOOHQJLQJ�PRPHQWV�RI�P\�ZRUN��7KHVH�LQFOXGH��EXW�FHUWDLQO\�QRW
OLPLWHG�WR��-DQ�3LFNHU\��,QJULG�6FKRFNDHUW���/LVD�9DQ�/DQGVFKRRW� $KPHG�$EGHOKDNLP���DQG
1RßPL�'HEDFNHU��/DVWO\��,ŖG�OLNH�WR�WKDQN�P\�SDUWQHU�2ED\�$O�%LWDU��IRU�KLV�HQGXULQJ
SDWLHQFH�DQG�ORYLQJ�VXSSRUW�

ũ�&RS\ULJKW�E\�.8�/HXYHQ

:LWKRXW�ZULWWHQ�SHUPLVVLRQ�RI�WKH�SURPRWHUV�DQG�WKH�DXWKRUV�LW�LV�IRUELGGHQ�WR�UHSURGXFH�RU
DGDSW�LQ�DQ\�IRUP�RU�E\�DQ\�PHDQV�DQ\�SDUW�RI�WKLV�SXEOLFDWLRQ��5HTXHVWV�IRU�REWDLQLQJ�WKH
ULJKW�WR�UHSURGXFH�RU�XWLOL]H�SDUWV�RI�WKLV�SXEOLFDWLRQ�VKRXOG�EH�DGGUHVVHG�WR�.8�/HXYHQ�
)DFXOWHLW�:HWHQVFKDSSHQ��&HOHVWLMQHQODDQ����+���EXV�������������/HXYHQ��+HYHUOHH��
WHOHSKRQH�����������������

$�ZULWWHQ�SHUPLVVLRQ�RI�WKH�SURPRWHU�LV�DOVR�UHTXLUHG�WR�XVH�WKH�PHWKRGV��SURGXFWV�
VFKHPDWLFV�DQG�SURJUDPV�GHVFULEHG�LQ�WKLV�ZRUN�IRU�LQGXVWULDO�RU�FRPPHUFLDO�XVH��DQG�IRU
VXEPLWWLQJ�WKLV�SXEOLFDWLRQ�LQ�VFLHQWLıF�FRQWHVWV�

Armen Abagyan
i



6XPPDU\

7KH�SUHVHQW�ZRUN�HQGHDYRUHG�WR�SUHGLFW�WKH�SURSHQVLW\�WR�PRYH�LQ�)ODQGHUV�XVLQJ�PDFKLQH
OHDUQLQJ�WHFKQLTXHV�DQG�%HOJLDQ�SXEOLF�UHJLVWHU�GDWD��GUDZLQJ�IURP�WKH�'XWFK�VWXG\
ŗ5HSODFLQJ�D�VXUYH\�TXHVWLRQQDLUH�E\�SUHGLFWLYH�PRGHOLQJ�XVLQJ�UHJLVWHU�GDWDŘ�SXEOLVKHG�LQ
�����E\�6WDWLVWLFV�1HWKHUODQGV��7R�DFKLHYH�WKLV��VHYHUDO�%HOJLDQ�QDWLRQDO�UHJLVWHUV�ZHUH
OLQNHG�FRQWDLQLQJ�OLIH�KLVWRU\�HYHQWV�DQG�SHUVRQDO��KRXVHKROG��QHLJKERUKRRG��DQG
PXQLFLSDOLW\�OHYHO�FKDUDFWHULVWLFV��6XSHUYLVHG�ELQDU\�FODVVLıFDWLRQ�PHWKRGV�HODVWLF�QHW
SHQDOL]HG�ORJLVWLF�UHJUHVVLRQ��UDQGRP�IRUHVW��DQG�;*%RRVW�ZHUH�HPSOR\HG�IRU�WKHLU�VXSHULRU
SHUIRUPDQFH�ZLWK�PXOWLFROOLQHDULW\�DQG�KLJK�GLPHQVLRQDO�GDWD��$OO�IHDWXUHV�NQRZQ�XS�WR�D
UHIHUHQFH�GDWH�RI�\HDU�W�ZHUH�XVHG�WR�SUHGLFW�PRYLQJ�EHKDYLRU�ZLWKLQ���\HDU�RI�WKDW
UHIHUHQFH�GDWH��-DQXDU\��VW��������ZDV�XVHG�DV�D�UHIHUHQFH�GDWH�WR�RSWLPL]H�DQG�WUDLQ�WKH
PRGHOV��ZKLFK�ZHUH�WKHQ�DSSOLHG�WR�D�WHVW�VHW�ZLWK�D�UHIHUHQFH�GDWH�RI�-DQXDU\��VW�������
+\SHUSDUDPHWHU�WXQLQJ�ZDV�SHUIRUPHG�IRU�HDFK�RI�WKH�PHWKRGV�YLD����IROG�FURVV�YDOLGDWLRQ
RQ�WKH�WUDLQLQJ�GDWD��ZKLFK�ZDV�XSVDPSOHG�XVLQJ�WKH�526(�PHWKRG�WR�UHFWLI\�FODVV
LPEDODQFH�

:KLOH�SUHGLFWLRQ�TXDOLW\�GLG�QRW�YDU\�VXEVWDQWLDOO\�ZLWK�WKH�PHWKRG��D�PHDQ�RXW�RI�VDPSOH
YDOLGDWLRQ�$8&�RI��������;*%RRVW��ZDV�DFKLHYHG��LQGLFDWLQJ�VWURQJ�PRGHO�GLVFULPLQDWLRQ
EHWZHHQ�PRYHUV�DQG�VWD\HUV��7KH�PRGHOV�JHQHUDOL]H�UHDVRQDEO\�ZHOO�WR�DQRWKHU�\HDU�
WKRXJK�WKHUH�LV�D�GURS�LQ�SUHGLFWLYH�SHUIRUPDQFH��PHDQ�WHVW�$8&�RI�������ZLWK�WKH�HODVWLF
QHW�SHQDOL]HG�ORJLVWLF�UHJUHVVLRQ���:KHQ�PLQLPL]LQJ�WKH�)DOVH�3RVLWLYH�5DWH��)35���RU�WKH
SURSRUWLRQ�RI�LQFRUUHFWO\�SUHGLFWHG�PRYHUV���������RI�PRYHUV�DUH�SUHGLFWHG�FRUUHFWO\�DQG
�������RI�VWD\HUV�DUH�SUHGLFWHG�FRUUHFWO\��:KHQ�PD[LPL]LQJ�WKH�7UXH�3RVLWLYH�5DWH��735��
RU�WKH�SURSRUWLRQ�RI�FRUUHFWO\�SUHGLFWHG�PRYHUV��D�735�RI��������LV�DFKLHYHG��WKRXJK�DW
WKH�H[SHQVH�RI�DQ�LQFUHDVHG�)35����������

7KRXJK�PDQ\�LPSURYHPHQWV�FDQ�EH�PDGH�WR�LPSURYH�SUHGLFWLYH�DFFXUDF\��WKLV�VWXG\
DFKLHYHG�WKH�VWDWHG�DLP�RI�SUHGLFWLQJ�PRYLQJ�SURSHQVLW\�XVLQJ�SXEOLF�UHJLVWHU�GDWD��6XFK
UHVXOWV�FRUURERUDWH�WKH�LQFUHDVLQJ�YLDELOLW\�RI�VHFRQGDU\�GDWD�LQ�OLHX�RI�VXUYH\
TXHVWLRQQDLUHV��DQG�LQGLFDWH�WKDW�VXFK�PHWKRGRORJ\�FDQ�EH�DSSOLHG�D�ZLGH�YDULHW\�RI
UHVHDUFK�TXHVWLRQV

Armen Abagyan
ii



���,QWURGXFWLRQ �

���/LWHUDWXUH�5HYLHZ �

���0HWKRGRORJ\ �
����'DWD�6RXUFHV �
����6WXG\�6DPSOH �
����3UHGLFWRUV �

������3HUVRQDO�)HDWXUHV �
������+RXVHKROG�)HDWXUHV �
������6WDWLVWLFDO�6HFWRU�)HDWXUHV �
������0XQLFLSDOLW\�)HDWXUHV �
������/LIH�+LVWRU\�(YHQWV �
������7LPH�6LQFH�/LIH�+LVWRU\�(YHQWV �

����6DPSOLQJ�0HWKRGV�WR�5HFWLI\�&ODVV�,PEDODQFH ��
����(YDOXDWLRQ�0HWULFV ��
����0DFKLQH�/HDUQLQJ�$OJRULWKPV ��

������(ODVWLF�1HW�3HQDOL]HG�/RJLVWLF�5HJUHVVLRQ ��
������5DQGRP�)RUHVW ��
������;*%RRVW ��

����3UHGLFWLRQ�0HWKRGV ��

���5HVXOWV ��
����([SORUDWRU\�'DWD�$QDO\VLV ��
����&ODVVLILFDWLRQ�'HFLVLRQ�7UHH�DQG�6DPSOLQJ�0HWKRG�IRU�7UDLQLQJ�'DWD ��
����+\SHUSDUDPHWHU�7XQLQJ�DQG�0RGHO�%XLOGLQJ ��
����3UHGLFWLRQ�5HVXOWV ��
����)HDWXUH�,PSRUWDQFH ��
����0LVFODVVLILFDWLRQ�DQG�)DOVH�3RVLWLYHV ��

���'LVFXVVLRQ ��
����6XPPDU\�RI�)LQGLQJV ��
����/LPLWDWLRQV ��
����&RQFOXVLRQ�DQG�)XWXUH�:RUN ��

���5HIHUHQFHV ��

Armen Abagyan
iii



1. Introduction:

Survey Questionnaires have long been an essential tool in data collection and the
backbone of research in the social sciences, allowing for the extraction of variables and
constructs of interest. While methodological and technological innovations have ushered in
more robust, representative sampling, time-saving and cost effective design, limitations
persist in survey based approaches to data collection.

One such challenge plaguing surveys are non response, whereby the respondent does not
respond to single questions (item non-response), or to the entire questionnaire (unit
non-response). Even when a questionnaire is completed by the respondent, there exists
the potential for a host of response biases which can have a negative impact on the
accuracy and reliability of the collected data. Many such response biases, such as “Social
Desirability” and “Acquiescence Bias”, are subject to psychological influences that inform

the responses of survey participants and are difficult to control for in the survey design.
1

Concurrent with the growing pressures on survey research due to lengthy processing time,
non-response/ response bias, incomplete sampling frames, and high costs, is the
increasing wealth of automatically generated non-survey administrative data.

Emerging from the automation of government services and digitalization of government
records, administrative data maintains certain advantages over survey data. First,
administrative records are often available for the entire population, allowing for larger
sample sizes and more complete coverage. Second, administrative data is longitudinal in
structure, permitting researchers to conduct individual level analysis over time. Third, it is
rich in information often unavailable in survey sources due to non-response/response bias.
Although not collected within the framework of a specific research design or question,
secondary administrative data is increasingly being seen by researchers and statisticians

as possessing viable research applications. 2,3

The application of machine learning algorithms on secondary data has become more
widespread in research across different disciplines, with many studies producing promising

results.
4,5,6

The present work draws on the 2018 study conducted by Statistics Netherlands
``Replacing a Survey Question by predictive modeling using register data” . In their work,
the authors assessed whether the Dutch Housing Survey on someone’s desire to move
houses could be replaced with a machine-learning predictive model based on public
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register data. The authors linked several registers from the Dutch System of Social
Statistical Datasets (SSD) containing life history events from 1995-2016 and all features
known up to a reference date were used to predict moving behavior within two years of
that reference date. The features included time dependent and independent demographic
features, time since last change in household composition, household, neighborhood and
municipality characteristics, and whether or not someone is a homeowner or starter in the
housing market. The study employed model based and machine learning techniques:
logistic regression, lasso-regression, ridge regression, and random forest.

Both the ridge regression and random forest model identified age, time since latest change
in household composition, and the time since the latest move or the number of moves over
the last 17 years as the most important for predicting moving behavior. When optimizing
for the difference between the True Positive Rate (TPR) and False Positive Rate (FPR) in
selecting the cutoff threshold, the authors achieved a classification of 60% of movers

correctly and 19% of stayers incorrectly. 7

The ultimate goal of this research is to see whether such a study is possible in Flanders
using Belgian public register data. It follows that the present study seeks to develop a
predictive model for moving behavior within one year of the reference date given life history
events, individual, household, neighborhood, and municipal characteristics known up to
that reference date. Expanding upon the methodology used in the Dutch study, three
machine learning binary classification techniques were employed: random forest, elastic
net penalized logistic regression, and XGBoost.

2. Literature Review:

Socio-demographic characteristics such as age, gender and migration status have been
well established as important predictors for moving behavior. Several studies have shown
that younger people tend to be more mobile, opting for urban destinations, whereas older

people become less mobile over time. 8,9

Household composition and position is considered an important factor in one’s moving
propensity, with households without children are known to be more mobile than those

without, since singles and couples without children are likely to be less settled. 10

Additionally, individuals living in a large household have been known to be more mobile. 11
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Family ties were shown to significantly diminish the mobility of individuals, whereby the
existence of familial attachments in a municipality decreased the likelihood of out-mobility

across ethnic groups. 12

Since personal income indicates the extent to which housing is within financial reach, it
likely impacts mobility behavior. Higher income individuals, therefore, may have greater
number of dwelling options available, and may have greater ease of realizing an initial
intention to move houses as compared to those with a low income status. Similarly, a
higher level of education, often correlated with higher income, may also facilitate the
realization of initial moving intention since more housing options are within financial reach.

13

Employment status has been shown to have an impact on residential mobility. In a British
study  investigating the relationships between housing tenure, employment status and
residential mobility, it was demonstrated that someone unemployed has a higher
probability of moving than an employed individual with similar characteristics, though the
propensity to move declines with unemployment duration. Additionally, the self-employed

have a marginally higher probability of moving than the employed. 14

Life history events are known to either trigger or attenuate mobility propensity, leading to
the “postponement or cancellation of an initial intention to move'', but “may also constitute
an unanticipated trigger for moving and subsequent move among people who had not
intended to move before the event took place. Such events include “unanticipated” and
“anticipated” life events, such as the formation and break up of unions, childbirth, a death
in the household, and change in labor market status. While certain unanticipated events
may trigger a move within a short time frame, anticipated events tend to take place after
the move some time after. Additionally, homeownership is associated with strong financial

ties to their current home making them less likely to move than renters. 15

A Dutch study performed on large-scale longitudinal register data demonstrated adapted
mobility behavior in response to neighborhood level “social distance”.The social distance
between individuals and neighbors, defined as social differences in education, profession,
income, and cultural background was shown to impact the odds of outward mobility from
the neighborhood. It follows that individuals  with a large social distance with respect to the
median social position of the residential neighborhood across various aforementioned
dimensions possessed a higher propensity to move than those with a smaller social

distance. 16
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Neighborhood ethnic composition was also shown to have an effect on neighborhood
out-mobility of individuals. More specifically, it was demonstrated that greater
neighborhood proportions of non-western ethnic minorities have a positive impact on the
propensity to move, and a further increase was noted for Dutch individuals in

neighborhoods with recent increases in the share of non-western ethnic minorities. 17

Regional economic conditions are also known to possess a modest impact on moving
propensity, with individuals less likely to leave “high income regions and metropolitan

areas”. 18

3. Methodology

3.1 Data Sources

Every registered resident in Belgium is given a unique personal identifier, allowing the
joining and linkage between different national registers across multiple years. The following
national registers were used: The Stock Register containing demographic features
including sex, age, civil status, parental IDs, household identifiers, nationality, country of
origin, country of birth, household type and position, statistical sector and municipality of
residence registered as of January 1st of the reference year; National Death Register
consisting of death records covering the entire reference year indicating the date of death ;
Educational Register containing records on individual level education status registered as
of January 1st of the reference year; Internal Migration Register consisting of individual
level migration data over the course of the reference year containing the move date as well
as the initial and destination municipality;  and Financial Register consisting of individual
level income and employment status records registered on January 1st of the reference
year.   Demographic, flow(deaths, and internal migration), financial, and educational public
registers are linked from the years 2010-2017 and supplemented with statistical sector and
municipality data from STATBEL. For the features of interest used to construct the
predictive model, there are no missing values.

3.2 Study Sample

150,000 households are initially randomly sampled without replacement in the year 2010,
and individuals present across all national registers from the years 2012-2017 are selected.
In each year, the entire households of sampled individuals are reselected for the generation
of household level features, after which, the initially sampled individuals are retained.
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To minimize missingness, only Belgian citizens who remain in Flanders throughout the
duration of the time frame were included in the study. Individuals who are at least 18 years
old  during the first prediction year are included as well, since the moving behavior of

children tends to be linked to that of their household guardians. Additionally, only19

individuals in private households and residing in statistical sectors with a population of
greater than 10 are included in the study.
The final study sample contained 198,024 individuals.

3.3 Predictors

The following predictors included in the study were motivated by previous literature on
factors influencing moving propensity. For features not included in the aforementioned
public registers, they are derived based on existing features.
All time dependent predictors, as well as the target variable, are included for each year in
the time horizon 2012-2017.

Target variable: Moving behavior within one year of the reference date.
0: Did not move
1: Moved

3.3.1 Personal Features:The following features are available January 1st of each year.

1. Age_cat: Age is categorized as follows :20

Q0: 0-17          Q4: 46-53
Q1: 18-26        Q5: 54-61
Q2: 27-36        Q6: 54-61
Q3: 37-45        Q7: 71+

2. Civil Status:
0: Unmarried
1: Married
2: Widow(er)
3: Divorced

3. Employment Status: Employment status for individuals with net income greater than
400 euros a month:

0: No paid job
1: Employed
2: Employed + other
3: Self-employed

5



4. Educational Status: Categorical levels 0-8 indicate educational status at the
reference date for each year, with each category corresponding to an increasing
level of education.

0- Early childhood education
1- Primary Education
2- Lower Secondary Education
3- Upper Secondary Education
4- Post-secondary non-Tertiary Education
5- Short-cycle tertiary education
6- Bachelor's degree or equivalent tertiary education level
7- Masters degree or equivalent tertiary education level
8- Doctoral degree or equivalent tertiary education level

5. Personal Income: Personal income is computed in line with the modified OECD
equivalence scale, whereby a weight is attributed to each person within the
household (1.0 to the first adult, 0.5 to the second adult and each subsequent

person aged 14 and over, and 0.3 to each child aged under 14). Then adjusted
21

household income is calculated by dividing the total household income by the sum
of the equivalence size per household. Quintiles of the adjusted household income
are computed for each given year and municipality, and individual incomes are thus
classified as “low”, “middle” or “high” according to their municipality of residence.

“Low”: Less than the 2nd quintile
“Middle”: Between the 2nd and 3rd quintile
“High”: Greater than the 3rd quintile

6. Origin: Individual origin is derived from an available feature from the public register
data, indicating an individual’s country of origin with country codes. The following
three categories are derived:

Belgian descent
Western European descent
Non-Western European descent

7. Family ties: The presence of family ties for an individual living in a municipality are
defined as having at least one parent living within said municipality.

0- No family ties within municipality
1- Family ties within municipality

3.3.2 Household Features: The following household features are available or derived from
existing features from the reference date of each year.

1. Household Position:
1- living alone
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2- married without children
3- married with children
4- child of/living with a married couple
5- unmarried living together, without children
6- unmarried living together, with children
7- child of/ living with an unmarried couple
8- single parent
9- child of/living with a single parent
10- person not belonging to the family nucleus
11- member of another household type

2. Household Type:
1- living alone
2- married couple without children
3- married couple with children
4- unmarried couple without children
5- unmarried couple with children
6- single parent household
7- other type

3. Number in Household: The total household size is computed at the reference date
for each year, and categorized:

1- single person household
2- two person household
3- three person household
4- four person household
5- five or more person household

4. Number of Children in Household: The number of children within each household is
computed at the reference date for each year and categorized:

0- no children.
1- one child
2- two children
3-three children
4- four or more children

3.3.3 Statistical Sector Features: The following features are computed for each statistical
sector for the reference date of each year. Percentages are then categorized as followed:

1:1-20%
2: 21-40%
3: 41-60%
4: 61:80%
5: 81-100%
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1. Percentage of Households with children: The number of households with children
including households consisting of a married or unmarried couples with children are
counted to generate the total percentage of households with children.

2. Percentage of individuals aged 65 and over:
3. Percentage of individuals by origin: Proportion derived from the generated feature

origin
Belgian
Western European
Non-Western European

4. Percentage of single households.
5. Percentage of single parent households.
6. Percentage of households by income:

Low income households
Middle income households
High income households

7. Median Age Category: The median age is calculated for the Statistical Sector. It is
not a percentage.

3.3.4 Municipal Characteristics: The following features are generated for the reference
date of each year.

1. Municipality Population Size: Quintiles are computed for population size by
municipality, and municipality size is categorized as “low”, “middle” and “high”

2. Employment/Unemployment Rate of Municipality: Both unemployment and
employment rate are categorized into 5 levels corresponding to increasing
percentages.

3.3.5 Life History Events: Life history events are generated as dummy variables coded 0 if
they did not occur and 1 if they did occur within 1 year of the reference date of each year.
Life history events are generated for each year included in the study.

1. Change in Civil Status: The civil status at the reference date for reference year and
the previous year are used to generate the following:

0- Divorced
1- Married
2- Widowed

2. Change in income status: Generated based on income status at the reference date
of each year with respect to the previous year.

3. Death within household: Generated based on whether someone else within the
household died within 1 year of the reference date.
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4. Birth within household: Generated based on whether a birth in the household took
place within 1 year of the reference date.

5. Change in employment status: The employment status at the reference date at the
year and the previous year are used to generate the following features:

0- Unemployed
1- Employed

6. Change in Household position: Derived from the household position at the reference
date of each year with respect to the household position at the reference date of the
previous year

7. Change in Household Type: Derived from the household type at the reference date
of each year with respect to the household type at the reference date of the
previous year

8. Someone within the household moved: Generated based on whether someone else
within the household moved houses within 1 year of the reference date.

9. Cumulative sum up until each year is included for moves, moves within the
household, births, and deaths.

3.3.5 Time since life history events: The time since life history events are computed with
respect to the reference date for each year starting from 2010.

1. Predictors for the prediction year t=2016, 2017 contain the following categories,
excluding events that take place after the reference date of the prediction year t.

0-6 months since event date
6-12 months since event date
12-18  months since event date
18-24 months since event date
2 + years since event date
No change: Event didn’t take place up until the reference date

2. Predictors for years t-1…t-4, which include the time since and after the reference
date of each year and are categorized as follows.

0-3 months since reference date
3-6 months since reference date
6-12 months since reference date
0-6 months since event date
6-12 months since event date
12-18  months since event date
18-24 months since event date
2 + years since event date
No change: Event didn’t take place up until the reference date

9



3. Time between the last move and last death within household, birth within
household, and someone else within the household moved are derived for the years
t-1…t-4 and are categorized as follows:

0-3 months since since move
3-6 months since since move
6-12 months since since move
12-18  months since move
18-24 months since move
2 + years since move
0-6 months since event date
6-12 months since event date
12-18  months since event date
18-24 months since event date
2 + years since event date
No change: Event didn’t take place up until the reference date

3.4 Sampling Methods to Rectify Class Imbalance

Table 1: Class Distribution Target Variable

Stayers Movers Movers (%)

Prediction year t 189545 8479 4.28

Prediction year t+1 188458 9566 4.83

Class imbalance in binary classification problems, particularly when the minority class is
the class of interest, can be problematic for predictive modeling since many machine
learning algorithms assume equal class distributions. As the learning process of most
classification algorithms is often biased towards the prevalent class, instances belonging
to the minority class are more often misclassified resulting in poor predictive performance.
Given the skewed class distribution of the feature of interest, it is indispensable to address
the class imbalance prior to modeling. 22

There are numerous sampling methods aimed at rectifying skewed class distributions of
the target variable. One such method of balancing data is random under sampling without
replacement, whereby samples from the majority class are removed at random to match
the size of the minority class. A significant drawback of under sampling is loss of
information, since it may remove potentially useful data essential for the learning process,
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resulting in poorer predictive performance. In the case of the present study, where the23

ratio of the minority class to the majority class is less than 1:20, random undersampling of
the training set would result in a significant loss of information for the learning process.

Another is random oversampling with replacement, whereby the minority class is
oversampled to match the size of the majority class. Since oversampling effectively makes
duplicates of existing minority samples to balance data, the chances of overfitting to the
training data become more likely. Additionally, oversampling results in larger data samples,

ultimately increasing computational cost. 24

Generation of new artificial data for the minority class is another method aimed at rectifying
the loss of information of random undersampling and the increased likelihood of overfitting
of random oversampling with replacement.

Random OverSampling Examples (ROSE), generates new synthetic instances of the
minority class from an estimate of the conditional density underlying the data based on a
smoothed bootstrap form of re-sampling the data. It has been shown to outperform
predictions based on unbalanced, as well as random oversampled and random

undersampled training data. 25

To inform the decision on the sampling method of choice to rectify the class imbalance, a
preliminary classification decision tree to predict moving behavior in year t is performed on
the training data treated with random undersampling without replacement, random
oversampling with replacement, and the ROSE method and evaluated on the validation
data. The sampling method with the best performance is then chosen for model
estimation, the results of which are seen in Figure 3.

To minimize the computational effort of the training process, the oversampled and ROSE
training data are limited to 50,000 observations, entailing an additional downsampling
without replacement of the majority class. Undersampling and oversampling of the training

data was performed using the “ROSE” package in R. 26

3.5 Evaluation Metrics:

All quality measures assess the predictive performance of each model based on predicted
vs. actual moving behavior, and are based on the confusion matrix, whereby the predicted
probability that an individual moves is translated into the binary target variable “stayed” or
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“moved”. A classification threshold value is used, whereby probabilities above the
threshold are classified as “moved”, and probabilities below the threshold are classified as
“stayed”.

Table 2: Confusion Matrix

Predicted
Observed

Stayed Moved

Stayed TN FP

Moved FN TP

TP: true positives, the number of correctly classified movers.
TN: true negatives, the number of correctly classified stayers.
FN: false negatives, the number of movers misclassified as stayers.
FP: false positives, the number of stayers misclassified as movers.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑁+𝑇𝑃
𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃

A common evaluation metric is accuracy, which is defined as the fraction of the total
predictions that are correct. While commonly used, accuracy is sensitive to class
imbalance, and therefore misleading as a standalone metric for assessing model
performance.

𝑇𝑃𝑅 =  𝑇𝑃
𝑇𝑃+𝐹𝑁 𝑇𝑁𝑅 =  𝑇𝑁

𝑇𝑁+𝐹𝑃 𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅

The “sensitivity”, or True Positive Rate (TPR), indicates the proportion of movers that are
correctly predicted by the model. The “specificity”, or True Negative Rate (TNR), is the
proportion of stayers that are correctly predicted, while the False Positive Rate (FPR),
indicates the proportion of stayers misclassified as movers. Given the imbalanced class
distribution of movers and stayers, it follows that TPR, TNR, and FPR are more informative
regarding the predictive performance of the derived models.

The receiver operating characteristic (ROC) curve, is a visualization of the trade off between
the TPR and FPR at different classification thresholds, and provides an overall
representation of the predictive performance of the classification model. The area under
the ROC Curve, or “AUC”, provides an aggregate measure of performance across all

12



possible classification thresholds and indicates the ability of the model to distinguish
between movers and stayers.

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃𝑅+𝑇𝑁𝑅
2

Finally, balanced accuracy, which takes into account class imbalance, and is defined as
the average between the TPR and TNR. It follows that given the unequal class distributions
of movers and stayers, this evaluation metric is appropriate.

3.6 Machine Learning Algorithms

The 3 model algorithms, elastic net penalized logistic regression , random forest, and
XGBoost are widely studied and commonly used machine learning models. They are
chosen due to their performance with high dimensional data and multi-collinearity amongst
predictors.

3.6.1 Elastic Net Penalized Logistic Regression

The performance of classical logistic regression in binary classification problems tends to
suffer in the face of high dimensionality due to increased risk of over-fitting.

Penalized logistic regression entails an imposed penalty to logistic regression for such high
dimensionality, and results in shrinking coefficients of less contributive predictors towards
zero, producing a more stable classifier. This is made possible by two types of
regularization: and .𝑙

2
𝑙

1

The ridge penalty is defined as:𝑙
2

λ
𝑗=1

𝑝

∑ β
𝑗

2

The LASSO (Least Absolute Shrinkage and Selection Operator) penalty is defined as:𝑙
1

λ
𝑗=1

𝑝

∑ β
𝑗

|
|
|

|
|
|

With the penalty parameter, emphasizing how much weight is given to the penalty. λ

regularization tends to shrink less contributive features to 0, resulting in a more𝑙
1

parsimonious model, making it ideal dimensionality reduction when dealing with high
dimensional data.  With regularization, on the other hand, the shrinkage of less𝑙

2

13



contributive features does not fully achieve 0, reducing the effect of highly correlated
predictors without removing them from the model. The elastic net penalized logistic
regression (elastic net), combines the and penalties of the LASSO and Ridge methods𝑙

1
𝑙

2

via the new parameter, with =0 giving way to the regularization of the Ridgeα α 𝑙
2

regression and =1 resulting in the regularization or LASSO regression. The estimatesα 𝑙
1

are produced from the minimization of the following loss function:

𝐿
𝑒𝑛𝑒𝑡

=  𝐿
𝑙𝑜𝑔

+  λ
𝑗=1

𝑝

∑ (αβ
𝑗

2
+ (1 − α) β

𝑗

|
|
|

|
|
|
)

With  “Logistic Loss” function, , and . 𝐿
𝑙𝑜𝑔

0 ≤ α ≤  1

Both the and are tuned on the training data, with optimal values chosen for the finalα λ
model. The ranking of features by importance is obtained through absolute magnitude of

the predictor coefficient produced by the elastic net. 27

3.6.2 Random Forest

Random Forest is an ensemble-based learning algorithm made up of an ensemble of
decision trees, incorporating bootstrap sampling of observations and random subselection
of predictors at each decision node. In the case of classification, the Random Forest
algorithm employs numerous de-correlated trees to compute majority votes in the terminal
leaf nodes for the outcome class. The Random Forest algorithm has several advantages,
including handling high dimensional and large dataframes composed of quantitative and
qualitative predictors. Another advantage is its ability to navigate high correlation amongst

predictors which may become problematic for non tree-like learning algorithms. 28

Random Forest Algorithm:
1. For to :𝑏 = 1 𝐵

a. Draw a bootstrap sample Z* of size N from the training data
b. Grow a random forest tree to the bootstrapped data, by recursively𝑇

𝑏

repeating the following steps for each terminal node of the tree, until the
minimum node size is reached.𝑛

𝑚𝑖𝑛

i. Select variables at random from the variables𝑚 𝑝
ii. Pick the best variable/split-point among the 𝑚
iii. Split the node into two daughter nodes

2. Output the ensemble of trees 𝑇𝑏{ }
1
𝐵

To make a prediction at a new point 𝑥:  
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Let be the class prediction of the random-forest tree. Then:𝐶
𝑏
(𝑥) 𝑏𝑡ℎ

𝐶
𝑟𝑓

𝐵
(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 𝐶

𝑏
(𝑥){ }

1

𝐵
 29

The following random forest hyperparameters are tuned:
1. min_n: the minimum number of observations in a node required for the node to be

split.
2. mtry: the number of predictors randomly sampled at each split.

Both are important in the prevention of overfitting, while the number of trees is held
constant at the default value of 500.

Feature importance for the random forest model is based on the mean decrease in the Gini
coefficient or Gini index, which indicates the extent to which each feature contributes to
the homogeneity of the nodes and leaves in the resulting random forest.

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 =
𝑘=1

𝐾

∑ 𝑝
𝑚𝑘

(1 − 𝑝
𝑚𝑘

)

With the proportion of training observations at node in class , and the total𝑝
𝑚𝑘

𝑚 𝑘 𝐾

number of classes. Impurity importance for each feature is computed by the sum of all30

impurity decrease measures of all nodes in the forest at which a split on said feature was
conducted, normalized by the number of trees.

3.6.3 XGBoost

The XGBoost (Extreme Gradient Boosting)  algorithm, another ensemble based learning
algorithm, expands on Gradient Tree Boosting, a tree boosting technique to reduce the loss
function using additive learning of the weak learners, in this case decision trees. Unlike the
random forests which build individual decision trees independently, Gradient Boosting
combines weak learners sequentially so that each new tree corrects the errors of the
previous one.

The objective function is defined as:

𝑂 Θ( ) =
𝑖=1

𝑁

∑ 𝐿(𝑦
𝑖
,  𝑦

𝑖

(𝑡)
) +

𝑘=1

𝐾

∑ λ(𝑓
𝑘
) 

With the loss function , the𝐿 𝐿(𝑦
𝑖
,  𝑦

𝑖

(𝑡)
) =  − [𝑦

𝑖
𝑙𝑜𝑔(𝑦

𝑖

(𝑡)
) + (1 − 𝑦

𝑖
)𝑙𝑜𝑔(1 − 𝑦

𝑖

(𝑡)
)] λ

regularization parameter, and is the complexity of the tree . the class label atλ(𝑓
𝑘
) 𝑓

𝑘
𝑦

𝑖
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instance , the prediction of instance at iteration . corresponds to the number of𝑖 𝑦
𝑖

(𝑡)
𝑖𝑡ℎ 𝑡 𝐾

trees and the number of trees.𝑁

First and second order optimization to find local minima are accomplished through the

gradient and hessian , which integrates , the prediction of instance at iteration𝑔
𝑖

ℎ
𝑖

𝑦
𝑖

(𝑡−1)
𝑖𝑡ℎ

.𝑡 − 1

𝑔
𝑖

=  ∂
𝑦

𝑖

(𝑡−1)𝐿(𝑦
𝑖
,  𝑦

𝑖

(𝑡−1)
)

ℎ
𝑖

=  ∂
𝑦

𝑖

(𝑡−1)
2 𝐿(𝑦

𝑖
,  𝑦

𝑖

(𝑡−1)
)

The final objective function becomes at iteration t:

𝑂 Θ( ) =
𝑖=1

𝑁

∑ 𝑔
𝑖
𝑓

𝑡
(𝑥

𝑖
) + 1

2 ℎ
𝑖
𝑓

𝑡
2(𝑥

𝑖
)⎡⎢⎣
⎤⎥⎦ + λ(𝑓

𝑡
) 31,32

The following XGBoost hyperparameters are tuned:
1. The Learn Rate: the step size shrinking used to descend the gradient
2. Loss Reduction: the minimum loss reduction required to make a split
3. Min_n, the minimum sample per node require for split,
4. M_try, the number of predictors sampled for each tree,
5. Sample size: the proportion of observations randomly sampled for each tree.
6. Tree depth: the maximum depth for each tree.

The top 30 ranked predictors for the XGBoost model is based on relative importance or
“relevance” of predictors. The relevance of in separating the class observations from𝑋

𝑖
𝑘

other classes is defined as:

𝐼
𝑙𝑘
2 = 1

𝑀
𝑚=1

𝑀

∑ 𝐼
𝑙𝑘
2 𝑇

𝑘𝑚( )
The overall relevance of is obtained by averaging over all classes.𝑋

𝑖

𝐼
𝑙
2 = 1

𝐾
𝑘=1

𝐾

∑ 𝐼
𝑙𝑘
2 33
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3.7 Prediction Methods

Table 3: Train, Validation and Test Split

Sample Size 2012 2013 2014 2015 2016 2017

90% TRAIN 178,221 (50,000
after ROSE)

t-4 t-3 t-2 t-1 t

10% VALIDATE 19,803 t-4 t-3 t-2 t-1 t

TEST 19,803 t-3 t-2 t-1 t t+1

The study sample of 198,024 individuals was split using stratified random sampling into a
90% training set and a 10% validation set for the years t-4…t  for prediction year t=2016 to
assure equal class distributions of the target variable. The test set, reserved for the final
model validation,  consists of the same individuals present in the validation set but for the
years  t-4…t for prediction year t=2017.

All features known up to a reference date of year t were used to predict moving behavior
within 1 year of the reference date. January 1st, 2016 was used as a reference date to
optimize and train the models, with further optimization performed using the validation set.
Trained models were applied to the test set to assess how well they generalize to another
year.

For the random forest model derivation, there were 326 total predictors. For the XGBoost
and eNET models, all categorical predictors were converted to dummy variables through
one hot encoding and the sparse matrix of predictors were generated, resulting in 1,414
total predictors.

For each prediction method, the optimal set of hyperparameters are grid searched via
10-fold cross validation on the training set treated with the ROSE upsampling method. The
initial hyperparameter space for each model is chosen using the train AUC as the
evaluation metric.

The initial grid search for the XGBoost and random forest models are performed using the

R package “TidyModels” , while the elastic net, random forest, and XGBoost models34

were performed using the “glmnet” , “randomForest” , and “xgboost” packages.35 36 37
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Additional hyperparameter tuning for select hyperparameters is performed for the random
forest and XGBoost models and evaluated on the validation set to avoid overfitting, after
which the final hyperparameter space is selected.

Then cutoff probability thresholds for classifying an individual as a “mover” or “stayer” are
chosen for the final predictive models for each machine learning algorithm based on a
trade off between the TPR and the FPR. Probability thresholds yielding a minimal
acceptable range of TPR values of 60-80% are considered. Within this range, the median

threshold value as well as the threshold resulting in the minimal FPR are𝑐
𝑚𝑒𝑑
* 𝑐

𝑚𝑖𝑛 𝐹𝑃𝑅
*

extracted from the model predictions on the validation set and then applied to model fit on
the validation and test dataset. The performance of each model is evaluated through the
accuracy, TPR, TNR, FPR, and balanced accuracy.

Top 30 predictors were reported separately for the elastic net, random forest, and XGBoost
model. The selection of the top predictors were based on the absolute magnitude of
predictor coefficient for the elastic net, and predictor importance score for random forest
and gradient boosting models.

Finally, to gain a better understanding of prediction errors,  two classification decision trees
are built based on the class predictions. The first, to classify observations that are correctly
or incorrectly predicted. The second, classifying false positives and false negatives among
misclassified observations. Given the high dimensionality of the data prepared for the
eNET logistic regression and XGBoost models, the classification decision trees are
performed solely for the final random forest model.
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4. Results

4.1 Exploratory Data Analysis

Figure 1: Relative Frequencies of movers in year t=2016, Personal and Household
Characteristics

In Figure 1, we see the relative frequencies of individuals who moved in year t=2016 and
select personal and household characteristics. Consistent with the literature, individuals
aged 18-26 (Q1), and 27-36 (Q2) are the most mobile, with relative frequencies of 6.87%
and 8.5% respectively. Individuals possessing a short-cycle tertiary education have the
highest mobility in year t (8.32%), with increasing education levels corresponding to less
mobility. Individuals of western european descent have higher relative moving frequency as
compared to individuals of Belgian descent or non-western european descent. Low income
individuals, it follows, possess marginally higher mobility as compared to middle and high
income individuals, while unmarried and divorced individuals are more mobile than the
married or widowed in year t. Those who were employed or employed with another
supplementary source of income had slightly higher mobility compared to individuals who
were unemployed or self-employed in year t. Individuals who belong to a single person
household, a household composed of an unmarried couple without children, or other
household type, are the most mobile as compared to other household compositions. We
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also see that the proportion of movers decreases with household size and number of
children.

Figure 2: Relative Frequencies of movers in year t=2016, life history events and time since
life history event

In Figure 2, we see the relative frequencies of individuals who moved in the prediction year
t, and select life history events, as well as the time since the last life history event for the
same year.  For individuals who found employment within the previous year, the proportion
of movers is more than double in year t. For those who became unemployed in the
previous year, the relative frequency is higher than those who did not become unemployed.
Individuals who experienced a change of income status within the previous year appear to
be more mobile in year t. Getting married within the previous year results in a higher
mobility in year t, and union dissolution results in nearly triple the proportion of movers in
year t as compared to those who did not experience a divorce. Becoming widowed
demonstrates the opposite effect, with widowers being half as mobile as individuals who
were not widowed in the previous year.

When looking at the time since the last move, the highest relative frequency of movers
occurs when the last move occurred within 6-12 months of the reference date for year t
(16.46%), followed by 0-6 months of the reference date (12.8%). For individuals whose last
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move was more than 2 years ago, the relative percentage of movers drops to 7.39%, and
for those who had not moved since 2010, the relative percentage is 1.62%. This indicates
that a higher proportion of individuals tend to move in year t when a previous move
occurred closer to the reference date, and moreover, individuals who had not moved since
2010 appear less mobile in year t.

A similar pattern is observed for the time since someone else moved, with the highest
proportion of movers occuring when someone else within the household moved within 0-6
months of the reference date for year t (9.05%). The relative frequency decreases with
increasing distance in time from the reference date since someone else within the
household moved, with the lowest for individuals who did not have someone leave their
household in the last 5 years. This suggests higher mobility for individuals experiencing a
recent change in household composition, and since a change in household composition
can often be an unanticipated event this is consistent with the literature.

The highest proportion of movers occurs when the last birth within the household was
between 12-18 months before the reference date of year t (7.16%), and lowest when no
birth occurred in the last five years (4%). Though the difference in the proportion of movers
is not substantial between time spans 0-6 months, 6-12 months, and 12-18 months before
the reference date, there is a drop in relative frequency as time since the last birth within
the household increases with respect to the reference date after 12-18 months.

Time since the last death within the household does not appear to result in any observable
pattern with respect to time since event and mobility in year t. Nonetheless, the highest
proportion of movers occurs when the death within the household took place 0-6 months
before the reference date, though the proportion is not substantially greater than
individuals with no death within the household in the last 5 years.

The time since divorce possesses highest proportion of movers for union dissolutions
taking place within the same year (13.65%) and steadily decreases with every additional
year since the event with respect to the reference date of year t, and appears consistent
with the literature demonstrating that a union dissolution, an often unanticipated event, will
trigger a move. The time since union formation, or marriage, does not show the same
pattern in moving proportions, likely because union formations are anticipated events, and
likely preclude a change in housing.
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4.2 Classification Decision Tree and Sampling Method for Training Data

Figure 3: Classification Decision Tree Training Set Sampling Method

Sampling Method AUC with 95% CI

Undersampled 71.40
(70.04-72.85)

Oversampled 73.5
(72.24-74.77)

ROSE 74.00
(72.37-75.55)

The preliminary Classification Decision Trees classifying movers in year t with
undersampled without replacement, oversampled with replacement, and ROSE training
data and their evaluation on the validation set are displayed in Figure 3. The mean AUC for
the decision tree model trained on the ROSE method is the highest as compared to the
other two sampling methods. Though the difference between mean AUCs for each method
is not statistically significant, nonetheless, the results indicate a modest improvement in
terms of predictive performance with the ROSE method. The literature on the superior
performance of ROSE with respect to undersampled and oversampled methods, provides
additional motivation for favoring the ROSE sampling method. As a result, the random
forest, XGBoost, and penalized logistic regression models are built and trained on the
ROSE training data.
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4.3 Hyperparameter Tuning and Model Building

Figure 4: Hyperparameter Grid Search Random Forest.

The hyperparameter grid search for the random forest model is performed on the training
data to find optimal values for the random forest hyperparameters. The results of the
second grid search on a target range of min_n and mtry values indicate an optimal AUC
value of 0.99 for min_n of 2 and mtry of 66. Overall, the model produces near perfect fit≈
on the training data, and therefore, near perfect discrimination between stayers and
movers.
To avoid overfitting, the number of variables sampled at each split is further tuned, while
keeping all other parameters constant, and evaluated on the validation set, the results of
which are seen in Figure 5.

Figure 5: Hyperparameter Tuning Random Forest mtry.
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The random forest model is retrained with all other hyperparameters held constant and
decreasing mtry values, effectively decreasing tree complexity and mitigating the risk of
overfitting. The AUC for trained models with mtry of 18, 30, 40, 55, and 66, the original
optimal value identified in the hyperparameter grid search range from 0.809-0.806
respectively after being evaluated on the validation set. Already, the results indicate a
substantial amount of overfitting, with a drop in AUC of around 18% as compared to the
initial fit on the training data. Given the unsubstantial difference in the AUC score between
models trained with varying mtry values, the smallest value for mtry is chosen for the final
model, which corresponds to random forest model with the least complexity, and therefore
decreases the likelihood of overfitting when evaluated on the test set.

Figure 6: Hyperparameter Grid Search and Tuning XGBoost.

The optimal values identified from the hyperparameter grid search for the XGBoost model
produce an AUC of 0.91, indicating strong discriminatory accuracy between stayers and≈
movers. The optimal hyperparameters are used to retrain the model, but now with
decreasing values of tree_depth, starting from the optimal value identified from the grid
search of 9, and evaluated on the validation set. As with the random forest model, there is
evidence of overfitting, given the drop in validation AUC of 9-10%.
The validation AUCs for decreasing values of tree_depth, and therefore decreasing model
complexity, are not substantially different. Nonetheless, the XGBoost model trained with a
tree_depth of 4 produces highest mean validation AUC of 0.815 and a slightly steeper ROC
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curve, and since this corresponds to a lesser degree of model complexity as compared to
the initial tree_depth of 9 as identified in the grid search, it is selected for the final model.

Figure 7: Hyperparameter Tuning eNET.

The hyperparameter tuning results for eNET model produce similar results on the training
dataset, with varying values for the alpha parameter (0, 0.25, 0.5, 0.75 and 1.0) yielding a
mean AUC of 0.8043, 0.8050, 0.8054, 0.8058, and 0.8052 respectively at their respective
optimal lambda values. The model with =0.75 and minimum = 0.0000301 is chosen, andα λ
therefore represents a LASSO-Ridge mix with a greater weight given to the LASSO
regression, whereby coefficients are to a greater extent pushed to zero resulting in a more
parsimonious model.

The retrained model with the aforementioned hyperparameter values is evaluated on the
validation set, the results of which are seen on the right hand plot in Figure 7. The fit on the
validation set does not result in a large drop in AUC, decreasing from 0.8058 to 0.792, and
indicates little evidence of overfitting on the validation data.
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4.4 Prediction Results

Table 4: Model performance metrics at median and minimum FPR risk thresholds for
predicting moving behavior in year t.

Model AUC (%)
with 95% CI

ACC (%)
with 95% CI

TPR (%) TNR (%) FPR (%) bACC(%
)

eNET 𝑐
𝑚𝑒𝑑
* 79.2

(77.75-80.57)
73.02 (72.40,

73.64)
72.14 73.06 26.94 72.60

eNET 𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
* 79.51  (78.94,

80.07)
60.12 80.39 19.61 70.26

RF 𝑐
𝑚𝑒𝑑
* 80.9

(0.7949-0.822
7)

75.58 (74.97,
76.18)

70.29 75.82 24.18 73.06

RF 𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
* 82.08 (81.54,

82.61)
60.12 83.08 16.92 71.59

XGBoost 𝑐
𝑚𝑒𝑑
* 81.5(80.11-82.

80)
76.55 (75.96,
77.14)

71.56 76.78 23.22 74.17

XGBoost

𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
*

82.90  (82.37,
83.42)

60.12 83.94 16.06 72.03

Table 4 shows the prediction quality of each final model on the validation dataset evaluated
at the median and minimum FPR thresholds. Overall, the prediction quality does not vary
significantly between models, with small differences seen with differing cutoff thresholds.
The mean validation AUC is highest with the XGBoost model (81.5%), though not
substantially higher than the other two methods. This indicates nonetheless, that the
XGBoost model is slightly better at distinguishing between movers and stayers. Generally,

models evaluated at result  in a higher overall accuracy as compared to models𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
*

evaluated at , which is to be expected as the threshold reflects when the FPR is𝑐
𝑚𝑒𝑑
*

minimal, and by extension, the TNR is maximized conditional on the TPR being between 60
and 80%. It follows that given the class imbalance in the data, minimizing the FPR will
result in an overall higher accuracy, with more stayers, the majority class, being correctly
predicted. While all three models  result in the same proportion of movers that were
correctly classified (60.12%), the XGBoost model boasts the highest proportion of correctly
classified stayers (83.94%), and by extension, the minimal percentage of incorrectly

classified stayers (16.06%). It follows that the XGBoost model with the threshold 𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
*

has the highest mean balanced accuracy of 72.03%, which indicates good predictive
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performance of moving behavior in year t, though not strongly outperforming the eNET and

random forest models. Similar results are seen for models evaluated at ,  with the𝑐
𝑚𝑒𝑑
*

XGBoost model resulting in the highest mean accuracy of 76.55%. The eNET model
however, results in a higher TPR, and therefore slightly outperforms the random forest and
XGBoost models in terms of classifying movers (72.14%), while the XGBoost models
performs marginally better in terms of classifying stayers (76.78%), and maintains the
highest mean balanced accuracy (74.17%), and therefore better predictive performance.

Table 5: Model performance metrics at median and minimum FPR risk thresholds for
predicting moving behavior in year t+1.

Model AUC (%)
with 95% CI

ACC (%)
with 95% CI

TPR (%) TNR (%) FPR (%) bACC(%)

eNET 𝑐
𝑚𝑒𝑑
* 77.3%

(75.93-78.69)

69.75 (69.10,
70.39)

71.34 69.66 30.34 70.50

eNET 𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
* 76.37 (75.77,

76.96)
60.47 77.23 22.77 68.85

RF 𝑐
𝑚𝑒𝑑
* 76.69%.

(0.7529-0.78
09)

73.45 (72.83,
74.06)

64.90 73.91 26.09 69.40

RF 𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
* 74.40 (73.78,

75.00)
62.15 75.06 24.94 68.61

XGBoost 𝑐
𝑚𝑒𝑑
* 77.17%(75.7

6-78.58)

74.92 (74.31,
75.52)

62.94 75.56 24.44 69.25

XGBoost

𝑐
𝑚𝑖𝑛 𝐹𝑃𝑅
*

81.76 (81.21,
82.29)

52.17 83.35 16.65 67.76

Table 5 shows the prediction quality for each model generalized to one additional year,

evaluated at and from the model predictions on the validation set.  Across the𝑐
𝑚𝑒𝑑
* 𝑐

𝑚𝑖𝑛 𝐹𝑃𝑅
*

three models and their corresponding risk thresholds, there is an overall moderate drop in
mean accuracy, indicating that models trained on t-u for u=0,...,4 do not generalize
perfectly to the test data consisting of years t-u for u=-1,..,3. This provides evidence that
the predictive models possess moderate variance and overfit to the years t-u for u=0,...,4.
Nonetheless, when minimizing the FPR, the XGBoost outperforms the random forest and
eNET models in terms of predicting the highest number of observations correctly (81.76%).
It follows that 83.35% of stayers are correctly predicted, though this comes at the expense

of the TPR, however, with only 52% of movers correctly predicted. At , the eNET model𝑐
𝑚𝑒𝑑
*
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possesses the highest TPR, correctly predicting 71.34% of movers, though this comes at
the cost of a higher rate of stayers being misclassified as movers (30.34%). It follows that

the eNET model with also achieves the highest mean balanced accuracy (70.5%),𝑐
𝑚𝑒𝑑
*

though the metric does not vary significantly between methods and risk thresholds.

Despite the moderate variance, prediction quality of moving behavior in year t+1 is within
acceptable range for good predictive performance across the elastic net, random forest
model, and XGBoost model.

4.5 Feature Importance

Figure 8: Feature Importance, random forest

Figure 8 shows the top 30 predictors with the highest importance based on the final elastic
net, random forest model, and XGBoost model. The ranking of features was dependent on
the method, with certain features overlapping between methods, while others selected
uniquely in one model.

According to the random forest model, the time since the last move for each year made up
5 of the top 6 predictors in terms of feature importance, with time since last move at year
t-1, year t, and year t-2 resulting a substantially greater mean decrease in the Gini
coefficient as compared to the other predictors. Other important features include age for
years t-u for u=0,...,4, as well as time since last change in personal income status for years
t-u for u=0,..,2, education status for years t-u for u=0,...,4, time since becoming employed
for year t, household position at years t and t-4, employment status at year t, personal

28



income status for year t-u for u=0,1,3,4, number within the household, the neighborhood
percentage of single households at year t, and the cumulative sum of moves at year t-1.
For the random forest model, the top 30 ranked predictors, (making up nearly 9% of the
total number of features) is largely made up of individual and household level
characteristics. Statistical sector and municipal level characteristics, do however make the
top 100 ranked predictors (30% of the total features), with the municipality size and the
unemployment/employment rates for each year achieving a mean Gini coefficient of greater
than 100, indicating that their relative contribution is not negligible.

Figure 9: Feature importance, XGBoost

The top predictor for the XGBoost model is the time since the last move with no change in
the last 5 years at year t-1, followed by a large drop in mean gain for the remaining features
whose mean gain is less than 0.05. Nonetheless, the age range of 18-26  and 27-36 at year
t-4, the cumulative sum of moves in year t-1, and the time since becoming employed with
no change in the last 5 years in year t possess relatively high predictive importance for
classifying movers in the XGBoost model.

The remaining top features consist mostly of personal, household characteristics, as well
as time since life history events. The presence of family ties is the 8th most important
feature for predicting moving behavior, which did not rank high with the random forest
model. Given the low mean gain of the top predictors following the time since last move
with no change in the last 5 years at year t-1, as well as the large number of features, it is
difficult to extrapolate any meaningful causal relationships with moving behavior.
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Figure 10: Feature Importance elastic net

Figure 10 shows the top 30 predictors identified by the elastic net logistic regression,
ranked according to the absolute magnitude of the coefficient. Unlike the random forest
and XGBoost model, statistical sector level predictors feature prominently, with 20 of the
30 top predictors related to the statistical sector. Additional features with high predictive
performance unique to the elastic net logistic regression include the time between a death
within the household and the last move at years t-u for u=2,3, the household position
relative to the head of the household at years t-u for u=0,2,3,4. The time since the last
move in prediction year t, also possesses high relative predictive performance in the elastic
net logistic regression.

Given the method dependent results, the ranking of the features by importance do not
provide a clear interpretation of causal relationships between predictors and moving
behavior. Nonetheless, the data and the features included appear sufficient for
classification in year t as well as prediction in  year t+1.
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4.6 Misclassification and False Positives

Figure 11: Decision Tree Misclassification and False Positives

In the left plot of Figure 11 is the classification decision tree for observations correctly or
incorrectly classified by the final random forest model evaluated on the validation set at

.  Those with no move within the last 5 years at year t-1 were correctly classified by the𝑐
𝑚𝑒𝑑
*

random forest model with a 3% probability of being misclassified, representing 62% of
total individuals. Those with a move within the last 5 years at year t-1 as well as belonging
to the age category Q1 or Q2, had a 81% probability of being misclassified, representing
21% of the total number of observations.  On the other hand, individuals  with a move
within the last 5 years at year t-1,belonging to the age categories Q3:Q7,  and a cumulative
sum of moves in year t-1 greater than 1 possessed a 77% probability of misclassification.

The right plot of Figure 11 shows the classification decision tree for False Positives or False
Negatives among misclassified observations by the final random forest model evaluated on

the validation set at . Individuals with a move within the last 5 years had a 98%𝑐
𝑚𝑒𝑑
*

probability of being misclassified as movers when they were in fact stayers, and if they
belonged to an age category at year t-3 of Q1:Q5, the probability increases to 99%,
accounting for 92% of total misclassified individuals. Those with the lowest probability of
being misclassified as movers by the model, were individuals without a move within the
last 5 years, belonging to age categories Q2:Q7 at year t-3, living in a statistical sector with
less than 20% or between 20-40% of single households, and having a household position
other than “child of/living with a single parent”.
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According to the classification decision tree results, the predictor time since last move at
year t-1 appears to be important in determining the prediction quality of the random forest
model, which has the highest probability of correctly classifying individuals as movers or
stayers when there has not been a move since 2010. Furthermore, the highest probability
that the random forest model misclassifies stayers as movers, occurs when the time since
last move at year t-1 is anything other than no move in the last 5 years. The age category
at year t-2 or t-3, also appear to be confounding for the random forest in predicting moving
behavior. Nonetheless, the results invite reflection on the overall structure of the features
present in the above decision trees, and present an opportunity to interrogate the use of
continuous predictors in lieu of categorical ones (in the case of time since last event etc.)

5. Discussion

5.1 Summary of Findings

The research question of this study was whether or not moving behavior within one year of
the reference date can be predicted using public register data, drawing upon personal,
household, neighborhood, and municipal level characteristics as well as life history events
for years t=2016,2017. The greater implications of this study, include the viability of
secondary data, in this case Belgian public register data, as an alternative to survey
questionnaires in predicting moving behavior.  This project aimed to expand upon the
Dutch study on predicting moving propensity using public register data.

Following hyperparameter tuning via 10-fold cross validation and evaluation on the out of
sample validation set, the final elastic net, random forest, and XGBoost models achieved
good discrimination between stayers and movers, achieving mean AUCs of 79.2-81.5%
respectively. The models generalize reasonably well to one year into the future, with test
AUCs for the elastic net, random forest, and XGBoost model of 77.30%, 76.69%, and
77.17% respectively. There is indeed a drop in predictive performance across the final
three models when generalized to year t+1. This is likely due to overfitting of the model to
the years t-u for u=0,..,4 and t=2016 of the training data, though the extent of the
overfitting appears moderate. This could be a result of the effect of social and economic
factors not included in the study that impact moving behavior, such as economic crises or
fluctuations in the housing market.

The ranking of features by importance differed between models, and this can be due to
several factors. Firstly, the high dimensionality of the data as well as the data structure
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could cause each model with their differing optimal hyperparameters to select different
features. Particularly in the case of the XGBoost and elastic net models, where categorical
features were one hot encoded resulting in 1,414 total predictors.  Secondly, this could be
due to the high degree of multicollinearity in the data.  Time dependent features were
included for each year of the time span of the data, which implies high correlation between
features at different lags. In addition to conventionally correlated features, i.e. education
and personal income, there is likely a degree of correlation between personal
characteristics as well as neighborhood characteristics. Though the three methods used
are relatively resistant to the negative effects of multicollinearity on prediction, this does
render the interpretation of causal relationships difficult given the lack of consensus on
feature importance.

Overall, prediction quality did not vary strongly with the method, though subtle differences
were observed depending on the metrics and optimal risk thresholds. The XGBoost
predictions of the out of sample validation data correctly classify 60.12% of movers
83.94% of stayers when choosing a risk threshold that minimizes the FPR within a range of
risk thresholds that yield a TPR of between 60-80%. When taking the median threshold,
the proportion of correctly classified stayers drops to 76.78%, while the proportion of
correctly classified movers increases to 71.56%, achieving a balanced accuracy of
74.17%.

When applying derived risk thresholds to model predictions one year into the future, the
XGBoost model correctly classifies 62.94% of movers correctly and 75.56% of stayers
correctly, yielding a balanced accuracy of 69.25%.  When optimizing for the maximal
proportion of correctly classified movers and minimal proportion of incorrectly classified
movers, the elastic net results in a TPR of 60.47% and an FPR of 22.77%. Though the
aforementioned Dutch study predicted moving behavior within two years of a given
reference date as opposed to one year as was done in this study, similar prediction quality
was attained (TPR =60% and FPR=19%) when maximizing for the difference between the
TPR and FPR. To this end, the present study prevailed in predicting moving behavior using
public register data, though there are numerous opportunities to improve model accuracy
and predictive performance.

5.2 Limitations

Though ROSE was ultimately chosen over random undersampling without replacement
and random oversampling with replacement, the Synthetic Minority Over-sampling
TEchnique (SMOTE), a widely used oversampling technique creating new synthetic
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minority class examples , could also be tried to rectify the unequal class distributions in38

the training data. Another technique to explore is class weights, that introduce a greater
penalization for misclassification of the minority class. Additionally, rather than base the
selection of the sampling technique on classification decision trees, it would be more
optimal to train each of the models employed in the study (elastic net, random forest,
XGBoost). This of course could be done in future research with sufficient time.

Expanding the time horizon as well as the study sample size are additional opportunities to
improve model accuracy and reduce generalization error. In the Dutch study, 17 years of
life history events and time dependent features were used to predict moving behavior,
whereas in the present study only 4 years were used for prediction. Due to limitations on
the time necessary for the appropriate data preprocessing and linking of public registers to
expand the time horizon, only 4 years of life history events were included.  Additionally, the
measurement of certain important features, such as educational status, differed between
years, which limited the possible time horizon.

Respecting the data privacy regulations and confidentiality of the public register data
provided by Statistics Flanders, any data manipulation, preprocessing, and analyses was
only possible on an on-site secure government server, on a provided computer. Given the
limited processing power (8GB RAM) available, significant compromises were made for the
sample size of the training data. Access to greater processing power as well as a remote
secure server would permit increasing sample size, and reduce overfitting.

Expanding the set of features would be advantageous for predictive performance.
Characteristics related to home ownership, for example, if someone was a homeowner or a
renter, possessed high feature importance in Statistics Netherlands study on moving
propensity. Migration status as well as migration type (which has been shown to have an
effect on moving propensity) would permit expanding the study beyond Belgian citizens.
Additionally, the inclusion of household type by income (private, student household with
income), as well as student status could improve model performance, as they are likely tied
with moving behavior. The aforementioned features were unavailable at the time of this
study, but would be valuable additions to future work.

In this study, two way interactions between features were not included for the eNET model,
due to the computational effort required for such high dimensional data following one-hot
encoding (1,414 features). This presents a missed opportunity for a more representative
model for moving propensity. The high dimensionality was as mentioned a result of the
categorization strategy of features, as well as the inclusion of time dependent features for
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each year in the study. An alternative, could be to keep many of the categorized features
as continuous (in cases where applicable), as well as only include the lags of certain
features (i.e. life history events), while retaining time since variables as well as personal
characteristics, as well as the cumulative sum for select life history events. In future work, it
can be assessed if such changes result in better prediction quality when including two-way
interactions.

In the case of the tree based models used in the study, namely random forest and
XGBoost, many argue that both machine learning algorithms capture interactions. This is
due to the recursive structure of decision trees where dependencies are accounted for
hierarchically. Moreover, different behavior in two branches after a split implies potential

interactions between predictors. These interactions often get lost,  as they are not39

captured in feature importance plots, which only indicate individual feature importance.
Future research can explore potential 2-way interactions through the computation of
Friedman’s H-statistic, for example.

Considerable gains in predictive performance can be seen with the inclusion of a set of
features related to social distance, as formulated in a previous study on moving propensity

and social distance Given that neighborhood level features had been generated for the. 40

study, it would be feasible to engineer for a set of demographic characteristics a “social
distance” feature. For example, if someone’s income was much lower or much higher than
the neighborhood median income. These features would likely have a higher impact on
moving propensity than potential interactions captured in the tree based models between
individual and neighborhood level characteristics.

5.3 Conclusion and Future Work

Though there is certainly room for improvement in terms of the methodology used in the
present study to obtain better prediction quality, results point to the viability of the
application secondary data for research in lieu of or at least complementary survey
questionnaires.Moreover, such methodology can be applied to other research questions
that can ultimately inform public policy. For instance, machine learning methods could be
applied to public register data to predict the propensity to become unemployed, or require
government financial assistance.  In an increasingly digitized age of automated data
collection, the richness and utility of secondary data sources only grows, creating more
opportunities to harness the immense research potential of administrative records. With a
gradual shift from survey questionnaires already in motion, the present research represents
a valuable contribution to this trend.
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