Predicting the Propensity to Move Using Register Data in Flanders

Armen Abagyan 24/05/2022

Research Motivation

- Statistics Netherlands study "Replacing a survey question by predictive modeling using register data" (Joep Burger et al, 2018)
- Replaced the Dutch Housing Survey on desire to move houses within two years by applying predictive machine learning algorithms on Dutch register data.
 - Survey questionnaires expensive, time consuming, declining response rates, mismatch between responded behavior and actual behavior → general shift from primary observation with survey questionnaires to secondary observation from administrative registers and big data.
- Authors linked several registers from the Dutch System of Social Statistical Datasets (SSD) containing life history events from 1995-2016, and all features known up to reference data were used to predict moving behavior within two years of that reference date.
- What about Flanders?

Data sources and features of interest

- Data for 2010-2019 (2020-2021 excluded)
 - Stock data
 - Flow data (deaths, births, internal migration)
 - Financial data
 - Education data
 - Statistical Sector data
- Individual characteristics
 - Country of origin, nationality, civil status, position within household, income (classified low, middle, high), starter, educational level (status?), employment status/ type, home ownership
- Households characteristics
 - Household type, # of people in HH, # of children in HH, HH income (classified low, middle, high)
- <u>Statistical Sector/neighborhood Characteristics</u>
 - Percentage of people over 65, Percentage of persons with a parent not born in Belgium, percentage of low/middle/high-income households, percentage of family households, percentage of single parent households, percentage of HHs with home ownership
- Interaction terms
 - Household type with percentage of household type in SS, HH income classification with percentage of HHs income classification.

Features (cont) – Life Events

- Events/ Change in Household within year t-1 with respect to reference date for year t
 - Life Course Events
 - Change in Civil Status
 - Change in employment/educational level
 - Moved in previous year/ number of moves in previous year
 - Change in Household Composition
 - Death within HH
 - Birth within HH,
 - Someone else within HH moved
 - Change in HH type
- <u>Time since last life course event or change in household composition with respect to reference date for</u> <u>vear t</u>

Sampling and Cross Validation strategies

• <u>Sampling</u>

- Only internal migration within Flanders itself is considered.
- Ages 16 -64.
- Collective households (public institutions excluded)
- 50,000 households in Flanders sampled in 2010, and individuals followed throughout years 2010-2019.
- Stratified sampling to assure equal proportion of movers in full and sampled data set.
 - Within Flanders, less than 3% of the population move houses, want to assure same percentage in sample.

<u>Cross Validation</u>

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
TRAIN	t-7	t-6	t-5	t-4	t-3	t-2	t-1	t		
VALIDATE		t-7	t-6	t-5	t-4	t-3	t-2	t-1	t	
TEST			t-7	t-6	t-5	t-4	t-3	t-2	t-1	t

Machine Learning Binary Classification Models:

- 1. Penalized Logistic Regression: Ridge, Lasso, and Elastic Net Regression
 - Penalized logistic regression: imposes penalty to LR for high dimensionality, results in shrinking coefficients of less contributive variables towards zero (Regularization).
 - Loss Function Ridge Regression:
 - Optimization procedure keeps loss function minimal
 - Lambda controls how much emphasis is given to the penalty term.
 - Coefficients pushed to zero but never achieve zero, not ideal if we only want to select important features
 - Loss Function: Lasso Regression
 - Coefficients pushed all the way to zero.
 - Penalty tends to pick one variable when predictor variables are correlated $L_{log} + \lambda \sum |\beta_j|$
 - Loss Function: Elastic Net
 - Combination of both Lasso and Ridge regression
 - Additional alpha parameter to give weight to Lasso or Ridge regression.
- Class weights implemented to deal with the highly imbalanced data.

$$\log \log s = \frac{1}{N} \sum_{i=1}^{N} \left[-(w_0(y_i^* \log(\widehat{y_i})) + w_1((1-y_i)^* \log(1-\widehat{y_i}))) \right]$$

$$L_{log} + \lambda \sum_{j=1}^r {eta_j}^2$$
 .

$$\sum_{j=1}^{j=1} L_{log} + \lambda \sum_{j=1}^{p} \left(lpha eta_j^2 + (1-lpha) |eta_j|
ight)$$

Machine Learning Binary Classification Models:

• <u>2. XGBoost: Extreme Gradient Boosting</u>

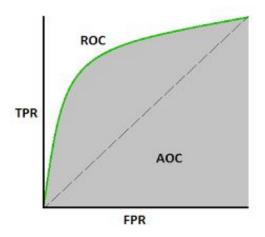
- 0
- XGBoost vs. Random Forest:
 - 1. XGBoost prunes the tree immediately with "similarity score" before entering into the actual modeling purposes.
 - 2. XGBoost requires far less hyper parameters than Random Forest.
 - 3. XGBoost better handles unbalanced data sets and Random Forest is less reliable.

Evaluation of Machine Learning Methods

<u>Confusion Matrix</u>

- <u>True Positive Rate/ Sensitivity</u>: TP/(TP+FN)
- <u>Specificity</u>: TN/(TN+FP)
- False Positive Rate (1-Specificity)
- **Precision:** TP/TP+FP

ROC-AUC CURVE



Actual Predicted	Moved=1	Moved =0
Moved=1	TP	FP
Moved=0	FN	TN

- ROC- Alternative to large number of confusion matrices in case of change of threshold.
- Can compare the ROCs of different machine learning models with AUC- % chance that the model will be able to distinguish between positive and negative classes.

Thank you !