
Piet Daas, Statistics Netherlands &
Eindhoven University of Technology Towards smart statistics

Natural Language Processing

Natural Language Processing

− Natural language processing (NLP)

a subfield of linguistics, computer science,
information engineering, and artificial intelligence
concerned with the interactions between
computers and human (natural) languages, in
particular how to program computers to process
and analyze large amounts of natural language data

- Use computers to derive meaning from text!

2

Natural Language Processing (2)

− There are many NLP tasks:

– Topic detection
– Classification of text
– Semantic analysis
– Sentiment analysis/opinion mining
– Name entity recognition
– Automatic summarization
– Machine translation
– Speech recognition
– Answering questions
– Fake news detection
– …
– These all require the interpretation of language by

computers

3

Natural Language Processing (3)

− Usually in NLP algorithms are applied to identify and extract
information from text
– Machine learning is heavily used nowadays
– In the ‘early days’ more rule-based approaches were used

− Text is converted in a form computers can ‘understand’
– It is converted into numbers!

− But language is not always easy for computers to understand
– “John hit the dog with a stick”

− Because its a broad area

− Let’s focus on steps needed to Classify texts

4

0. Obtain documents

− Document containing texts
– Web pages
– PDF files
– Word documents
– Social media messages
– Emails
– Product descriptions
– …

− Size matters, different approach for:
– Short texts, such as social media messages

v.s.
– Other (larger) documents

− For classification: essential to have annotated examples

5

Creating a text classifier

6

− Process overview

Preprocessing
(tokenization,
lowercase, only
characters, stop
word removal,
character length,
stemming,
….)

Feature extraction
(‘words’ and

word combinations)
‘Machine Learning’

algorithm

Class (0/1)
training/test set

Text based
classification model

Document Term Matrix
with values

Webpages/
Documents

Training

Testing

1. ‘Text indexing’ 2. ‘Text Encoding’

3. ‘Text Categorisation’

More in: Taeho, J. (2019). Text mining: concepts, implementation, and big data challenge. Springer.

Extract
text

1. ‘Text indexing’: preprocessing

− After extraction, the text is usually to preprocessed

− Tokenization

− Convert to lowercase,

− Remove punctuation marks and numbers,

− Remove stop words (language dependent),

− Remove ‘small’ sized words (char <= 2)

− Do stemming / lemmatization (language dependent).

− This creates a more homogeneous text representation

7

Creating a text classifier

8

− Process overview

Preprocessing
(tokenization,
lowercase, only
characters, stop
word removal,
character length,
stemming,
….)

Feature extraction
(‘words’ and

word combinations)
‘Machine Learning’

algorithm

Text based
classification model- Multistage model development

- Most common approach applied

Document Term Matrix
with values

Webpages/
Documents

Training

Testing

1. ‘Text indexing’ 2. ‘Text Encoding’

3. ‘Text Categorisation’

More in: Taeho, J. (2019). Text mining: concepts, implementation, and big data challenge. Springer.

Extract
text

2. ‘Text encoding’

− Preprocessed text is subsequently encoded
– This is the step were the ‘features’ are converted to a numeric

representation

− Character sequences
– Various lengths (often 2-5)
– Count occurrences, Term frequency, TF-IDF

− Single Words
– ‘Bag of words’ approach
– Count occurrences, Term frequency, TF-IDF

− Word combinations
– Usually bigrams, sometimes also trigrams
− Count occurrences, Term frequency, TF-IDF

− Word embeddings
– Words in their context, skip n-grams
– Vector representation (usually a Neural network)

9

Term Frequency, TF-IDF explained

10

Term Frequency:
tf(‘this’, doc1) = 1/5 = 0.2
tf(‘this’, doc2) = 1/7 ≈ 0.14

Term Frequency Inverse Document Frequency (TF-IDF):
tfidf(‘this’, d1) = tf(‘this’, d1)*idf(‘this’, D) = 0.2 * log(2/2) = 0
tfidf(‘this’, d2) = tf(‘this’, d2)*idf(‘this’, D) = 0.14 * log(2/2) = 0

Doc1: ‘A: this is a sample’ Doc2: ‘Another example: this is another example, example’

Term Frequency, TF-IDF explained

11

Term Frequency:
tf(‘example’, doc1) = 0/5 = 0
tf(‘example’, doc2) = 3/7 ≈ 0.429

Term Frequency Inverse Document Frequency:
tfidf(‘example’, d1) = tf(‘example’, d1)*idf(‘example’, D) = 0 * log(2/1) = 0
tfidf(‘example’, d2) = tf(‘example’, d2)*idf(‘example’, D) = 0.28 * log(2/1) ≈ 0.129

Doc1: ‘A: this is a sample’ Doc2: ‘Another example: this is another example, example’

2. ‘Text encoding’

− Preprocessed text is subsequently encoded
– This is the step were the ‘features’ are converted to a numeric

representation

− Character sequences
– Various lengths (often 2-5)
– Count occurrences, Term frequency, TF-IDF

− Single Words
– ‘Bag of words’ approach
– Count occurrences, Term frequency, TF-IDF

− Word combinations
– Usually bigrams, sometimes also trigrams
− Count occurrences, Term frequency, TF-IDF

− Word embeddings
– Words in their context, skip n-grams
– Vector representation (usually a Neural network)

12

Word embeddings

− Word embeddings is currently one of the most popular
representation of document vocabulary. It is capable of
capturing context of a word in a document, semantic and
syntactic similarity, relation with other words, etc.

− Popular implementations:
– Word2Vec (Google)
– GloVe (Stanford)
– fastText (Facebook)

– Make use of word co-occurences. The (cosine) distance
between words is an import property.

13

Word embeddings (2)

14

Creating a text classifier

15

− Process overview

Preprocessing
(tokenization,
lowercase, only
characters, stop
word removal,
character length,
stemming,
….)

Feature extraction
(‘words’ and

word combinations)
‘Machine Learning’

algorithm

Class (0/1)
training/test set

Text based
classification model- Multistage model development

- Most common approach applied

Document Term Matrix
with values

Webpages/
Documents

Training

Testing

1. ‘Text indexing’ 2. ‘Text Encoding’

3. ‘Text Categorisation’

More in: Taeho, J. (2019). Text mining: concepts, implementation, and big data challenge. Springer.

Extract
text

3. ‘Text categorization’

− Often Machine learning is used (including NN/DL)

− Automatic optimization of classification

− Many algorithms can be used

− Test to see what algorithm (and indexing and
preprocessings steps) works best

− Critically check the findings

– Use an annotated Training and Test set (80%/20%)

− Preferably also with an external validation of the final
model!

16

An example: Innovative company detection

− Goal: Detecting innovative companies via the text on their web
site

– Can the text on a web page be used to detect if a company is
innovative?

– Web pages can be ‘scraped’ fairly easy

− In this study we looked at:

– The potential of web pages to provide information on
the innovative character of a company

– Data from the Community Innovation Survey was used to
create a training and test set

17

The Community Innovation Survey

− The Community Innovation Survey (CIS)

– Focusses on the innovativeness of companies

– Is a European standardized survey

− The questionnaire is send every other year to about 10,000
companies in the Netherlands

– Stratified sample of companies

– Only companies with 10 or more working persons (WP)

– Company provides info on innovation character and type

– We focussed on technological innovation

– (CIS lacks info on small companies, such as start-ups!)

18

Model building: import considerations

− Web pages were processed (html-files) and words extracted

– Effect of various pre-processing steps

– Later on: additional removal of words

− A supervised classification task

– Tested various algorithms (80/20 training/test set)

– Compared various metrics (Accuracy is best)

– Started with TF-IDF value in DTM (Log(TF-IDF+1) is better)

– Effect of including words above a specific number of
characters (2, 3)

– Effect of including Word embeddings

19

20

Table 1. Results for the various classification algorithms tested. Default settings were used.
The average and standard deviation of 1000 tries are shown as percentages.

Words of 2 and Words of 3 and Word of 3 and

more characters more characters more characters

 (%) (%) incl. word embeddings

 (%)

Bernoulli Naïve Bayes 87 ± 1 60 ± 1 61 ± 2

Logistic Regression (L1 regularization) 94 ± 1 60 ± 2 93 ± 1

Nearest Neighbors (k = 2) 61 ± 2 52 ± 1 58 ± 1

Support Vector Machine (linear) 93 ± 1 60 ± 1 81 ± 1

Support Vector Machine (radial basis) 53 ± 1 53 ± 1 57 ± 3

Stochastic Gradient Decent 93 ± 1 58 ± 2 79 ± 3

Quadratic Discriminant Analysis 77 ± 8 57 ± 2 56 ± 2

Neural Network (multi-layer perceptron) 92 ± 1 62 ± 2 74 ± 3

Decision Tree 94 ± 1 54 ± 1 61 ± 2

Random Forests 94 ± 1 56 ± 2 64 ± 1

Gradient Tree Boosting 94 ± 1 59 ± 1 71 ± 1

 2 character words (such as ‘nl’, ‘be’, ‘en’) dominated the model and were therefore ignored

Accuracy

External validation & model stability

− Tested the model on:

– Web sites of start-ups (92% innovative)

– Web sites of small companies (WP < 10) (around 33%)

− However long-term stability was

found to be an issue

- Solved this by including additional

classified data

- A standard Machine Learning

way to deal with this problem

21

Final model details

− 88% Accuracy over various datasets

− A single model including words in both languages

− 580 stemmed words included in the model

− An English website is a positive indication for innovation
(compared to Dutch)

− Depending on the language, there are words that are clearly
positive associated with innovation.

– Positive: Technology, innovation, software, data

– Negative: Sale, buy, shopping car, exclusive, service

22

NLP and the Dutch language

− More info on Dutch NLP tools can be found at:

– LaMachine website:
https://proycon.github.io/LaMachine/

– Contains tools and libraries for analysing Dutch texts

23

24

Creating a text-based
model

25

Parsing

To lower case

Pre-processing text

Number and
punctuation mark

removal

Language detection

Remove Stop words

Remove scripts

TF-IDF /
Log(TF-IDF + 1)

Feature engineering

Minimal word freq.

Effect of Word
embeddings

Bag of words

Remove words
below a specific

length

Stemming

Model building

Algorithm selection

Dataset(s) usedModel evaluation

Training/test split.

Evaluation metric

External validation

Model stability

Performance over
time

Hyperparameter
tuning

Minimum number
of words (>= 10)

