

Machine learning in official statistics: two case studies

Joep Burger

Data Science for Better Decisions, 17 December 2019

Tradition

Questionnaire + probability sample + design-based estimators

Pros

- In control
- Unbiased estimates
- Known variance

Cons

- Expensive
- Slow
- High-level
- In control?

Alternative

- Automatically generated digital data
 - Dutch System of Social statistical Datasets
 - Sensors, satellites, internet, ...
- IT infrastructure
- AI

Research questions

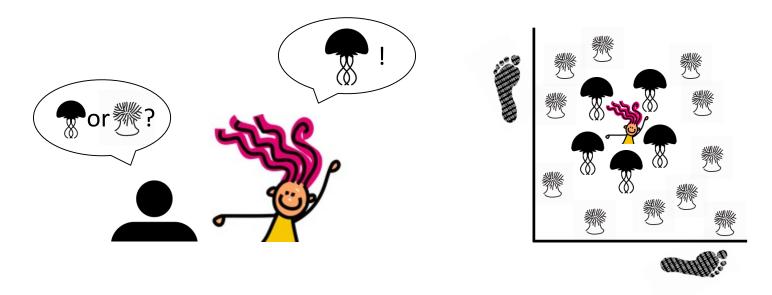
- 1. Can we predict instead of ask about future behavior?
- → shorter questionnaires, reduce survey fatigue

- 2. Can we learn statistical information from images?
- → higher precision, higher frequency

Case study 1: Dutch Housing Survey

- Three-yearly survey about housing conditions and needs among 18+
- 'Do you want to move within 2 years?'
- Compare with actual moving behavior

Ask or predict



Ask Predict

Data

- Registered events 1995–2016
- 100k sample + 63k HS2015 respondents
- Features on persons, households, dwellings, regions
 - Time-independent
 - Status j u
 - Time since latest change
 - Number of changes
- Binary target variable {moves, stays}

	1995	1996	1997	1998	 2012	2013	2014	2015	2016
Optimize and Train		j – 17	j – 16	j – 15	 j – 1	j	<i>j</i> + 1		
Generalize				j – 17	 <i>j</i> − 3	<i>j</i> − 2	<i>j</i> − 1	j	<i>j</i> + 1

Methods

- Generalized linear model
 - Logit link
 - Main effects without (1) or with (2) interactions
 - Regularization: none (GLM), L1 (LAS), L2 (RDG)
- Random forest
 - \sqrt{m} features per node
 - At least 20 observations per leaf
 - 500 trees
- Survival

Control

Housing Survey

'Do you want to move within 2 years?'			
1 Definitely not	0		
2 Possibly, maybe	0.5		
3 Would like to, cannot find anything			
4 Definitely	1		
5 I have already found other housing/dwelling	1		
6 Don't know	0.5		

Quality measures

Probability [0,1]

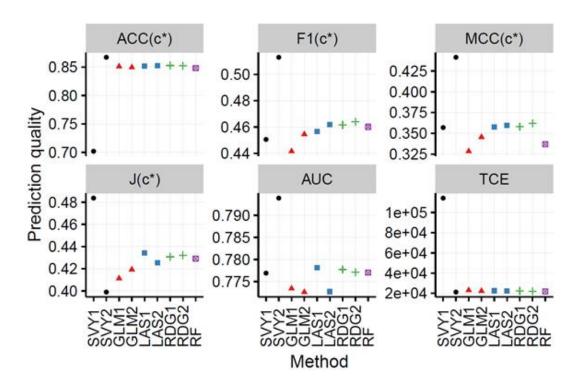
Total cross entropy

Binary {moves,stays}

- Accuracy
- F1
- MCC
- ____
- AUC

		Predicted			
		Moves	Stays	Total	
Actual	Moves	TP	FN	AP	
	Stays	FP	TN	AN	
	Total	PP	PN	N	

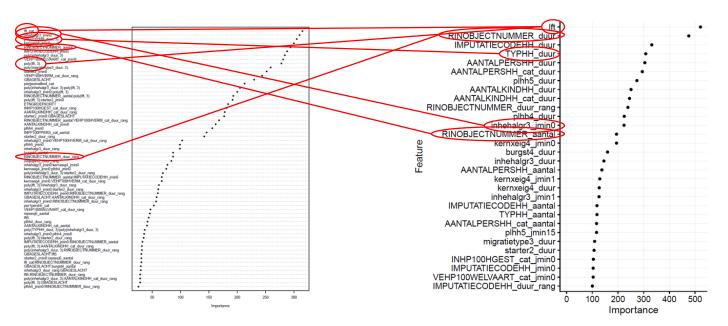
Compare HS2015 respondents



Interpretability

RDG2

Random forest



Conclusions

- Models predict actual moving behavior about equally well as respondents themselves
- Only subtle differences between methods
- Best method depends on quality measure

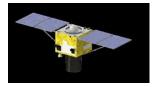
- Not limited to sample units
- Applicable to other target variables
- Useful for sampling design and weighting

Case study 2: imagery

- EU's Horizon2020 MAKSWELL WP3
- UNECE ML in OS WP1 imagery

Input data

- Superview satellite images
- Pre-processed by Netherlands Space Office
- www.satellietdataportaal.nl
- -2019
- Resolution 0.5 m
- 4 channels (RGBI)
- 16-bit color palette [0,65535]
- Coordinate Reference System EPSG:28992 (Amersfoort / RD)



Output data

- Square statistics
- https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/kaart-van-500-meter-bij-500-meter-met-statistieken
- 500 m \times 500 m (25 ha)
- Persons (e.g. origin, social-security benefits)
- Households (e.g. single-person, size)
- Dwellings (e.g. density, energy consumption)
- Coordinate Reference System EPSG:28992 (Amersfoort / RD)

Processing

188820.0

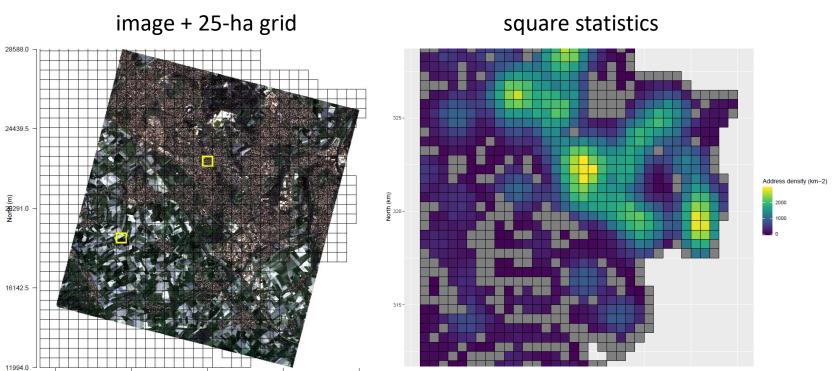
192777.5

196735.0

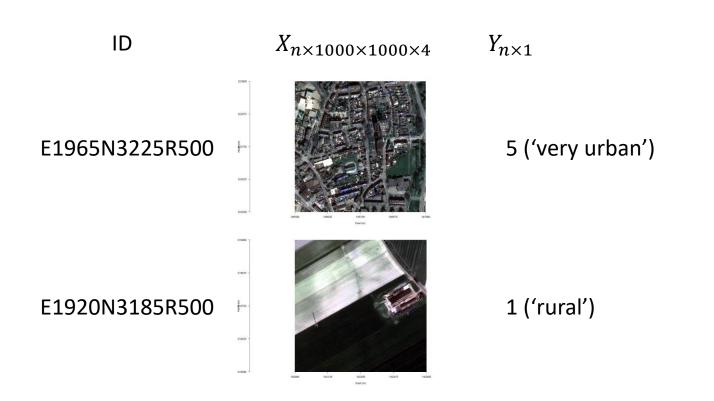
East (m)

200692.5

204650.0



Intermediate result



Convolutional neural network

Multi-class classification



To do

- Scale up/out
- Data augmentation and normalization
- Find pretrained CNN
- Optimize CNN architecture and hyperparameters
- Other grid (n 25-ha or 25n 1-ha)
- Other input (aerial, Landsat, street view)
- Other output (geotagged income, input features)

Data science for better decisions

- Explain or predict
- Process or output phase
- Define quality
- Crossover statistics computer science

Acknowledgments

Bart Buelens Tim de Jong Yvonne Gootzen Jacqueline van Beuningen Saskia Janssen-Jansen Jan van den Brakel Marc Ponsen Lyana Curier Abel Coronado Jimena Juarez

Discussion

- Operationalization
 - 'Do you want to move?'
 - 'Are you planning to move?'
- Generalization error

Future

- Predict quality by subpopulation
- Multinomial target variable
 - Type of dwelling
 - Location
- More features, including mobile phone data
- Multilevel models
- Train with complete population
- Survival analysis

Features

Person

- Age
- Gender
- Origin
- Migration status
- Marital status
- Position in household
- Socio-economic status
- First-time buyer
- Personal income

Household

- Household composition
- Household type
- Indicator imputed relationship
- Main source of household income
- Number of children living at home
- Household size
- Household income
- Household standard of living
- Household assets

Dwelling

- Dwelling ID
- Ownership

Neighborhood

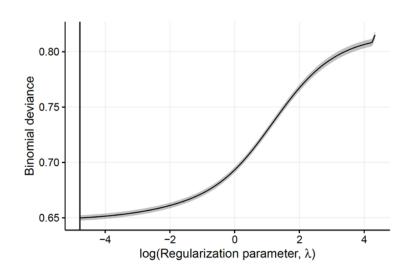
- Level of urbanization Number of job
- Proportion 65+
- Proportion born abroad
- Proportion imputed relationship
- Proportion with children
- Proportion single hh
- Proportion low income
- Proportion privatelyowned
- Duration of residence

Province

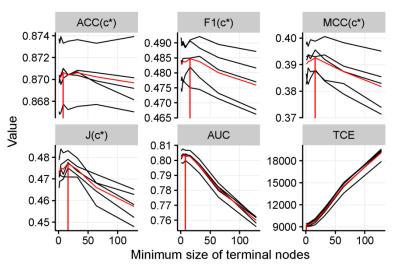
- Number of job vacancies
- Number of dwellings for sale
- Price index privatelyowned dwellings
- YoY change in price index

Optimization

Ridge



Random forest

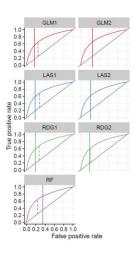


Quality measures

Probability [0,1]

$$- TCE = \sum_{i=1}^{N} CE_i$$

$$- CE_i = -\sum_{k=1}^{2} p_{ik} \log \hat{p}_{ik} = -(y_i \log \hat{p}_i + (1 - y_i) \log(1 - \hat{p}_i))$$



Binary {moves, stays}

$$- ACC = \frac{TP + TN}{N}$$

-
$$TPR = \frac{TP}{4P}$$
 (sensitivity, recall)

$$- FPR = \frac{FP}{AN}$$
(complement of specificity)

$$- J = TPR - FPR$$

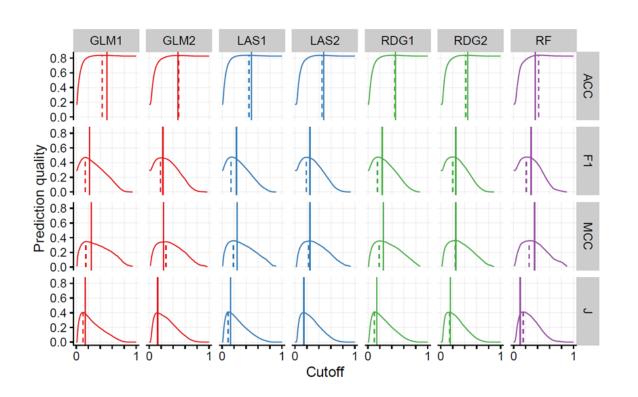
$$-PPV = \frac{TP}{PP}$$
 (precision)

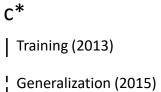
$$- F1 = \left(\frac{TPR^{-1} + PPV^{-1}}{2}\right)^{-1}$$

$$-MCC = \frac{TP \times TN - FP \times FN}{\sqrt{PP \times PN \times AP \times AN}}$$

		Predicted			
		Moves	Stays	Total	
Actual	Moves	TP	FN	AP	
	Stays	FP	TN	AN	
	Total	PP	PN	N	

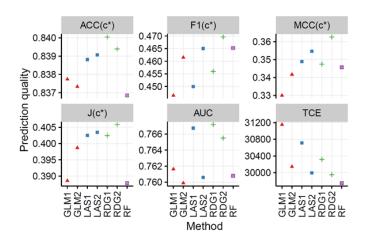
Prediction quality



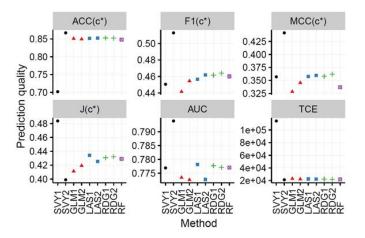


Prediction quality (2)

Random sample

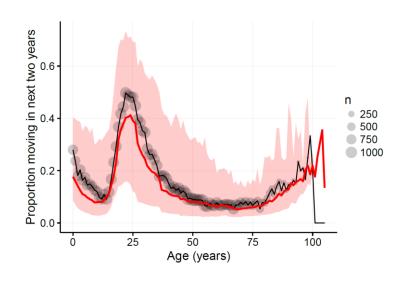


HS2015 respondents



Ridge regression with interactions (RDG2)

Measure	C *	TPR (%)	FPR (%)	PPV (%)
J	0.16	60	19	39
MCC	0.25	46	10	48



Missing data

- Surveys: nonresponse
- Registers: undercoverage
- Images: literally invisible statistics

