Green Spaces in Residential Gardens

Dr Christopher Bonham

Data Science Campus

web: datasciencecampus.ons.gov.ukemail: datasciencecampus@ons.gov.uktwitter: @DataSciCampus

The challenge

• Natural Capital. What % of UK gardens are covered in vegetation?

Aerial imagery BlueSky - Public Sector Mapping Agreement (PSMA)

Private gardens polygons Ordnance Survey MasterMap

Why?

- Flood risk mapping
 - Estimate the benefits of urban drainage such as vegetation.
- Urban heat calculation
 - Improving accuracy in model by including vegetation coverage
- House price predictions
 - Replace current estimation of green space
- Carbon footprint estimation
 - Differentiate between trees and grass

Off the shelf measures – RGB based

- All three metrics use the additive RGB colour system
- Equation is applied to the RGB values of each pixel
- Each metric ranges from 0 to 1
- Value > 0 green living material

Visual Normalised Difference Vegetation Index (vNDVI)

• Uses only the green and red channels

$$vNDVI = \frac{(G-R)}{(G+R)}$$

Green Leaf Index (GLI)

Development of vNDVI using the blue channel

$$GLI = \frac{(2 \times G - R - B)}{(2 \times G + R + B)}$$

Visual Atmospheric Resistance Index (VARI)

• Insensitive to atmospheric effects

$$VARI = \frac{(G-R)}{(G+R-B)}$$

Off the shelf measures – HSV based

- More closely aligned to human vision
- Hue (H), Saturation (S) and Value (V)
 - Hue represents colour
 - Saturation represents the amount of grey in the image
 - Value represents brightness
- Colour (hue) independent of saturation and value
- Pixel labelled as green if its hue is between 30 and 80

Off the shelf measures – Lab based

- CEILAB (Lab) colour space expresses colour as three numerical values
 - L represents lightness (black to white)
 - a represents green to red colours
 - b represents blue to yellow colours
- Previous work at the campus used labelled data from Mapilliary Vistas dataset to optimise a and b thresholds

Single Lab(a*) $-31 \le a \le -11$ Double Lab(a*b*) $-31 \le a \le -6$
5 < b < 57

We don't have ground truth

- Mapiliary Vistas image library classifies each pixel into a number of classes (people, car, tree, building etc)
- This can be used to assess performance of vegetation classification algorithms for street level imagery
- No equivalent labelled dataset for aerial imagery
- Initial study, library of 10 test images is used
- Each image represents a different garden feature
- Performance is quantitively assessed on these images

Results – Test image 1

vNDVI (84.2%)

- All approaches perform well
- Some noise in LAB results

GLI (88.4%)

VARI (84.2%)

Lab(a*b*) (78.8%)

Results – Test image 3

vNDVI (48.3%)

GLI (63.7%)

VARI (48.1%)

- Both LAB approaches perform well
- HSV classifies some slabs as green
- All RGB based algorithms very poor

HSV (16.2%)

Lab(a*) (2.5%)

Lab(a*b*) (3.3%)

Application of HSV to Bristol – High Level

Original Picture (25cm)

Green pixels (25cm) HSV color scheme 30 ≤ Hue threshold ≤ 80

Application of HSV to Bristol – Low level

Original Picture (12.5cm)

Garden identified by polygon

Green pixels HSV color scheme $30 \le$ Hue threshold ≤ 80

Supervised learning

We need labels to train algorithm

- 100 images randomly selected from Cardiff and Bristol
- 4 people each manually labelled 75 images (100 images labelled by 3 different people)
 - Green vegetation
 - **Blue** vegetation in shade
 - Red urban in shade
- Voting logic classifies each pixel based upon the most popular choice, out voting bad choices
- Classification matrix gives agreement rate between reviewers
- If agreement rate drops below 80% fourth person reviews image

Manual labelling

Data Science Campus | <u>datasciencecampus.ons.gov.uk</u> | <u>datasciencecampus@ons.gov.uk</u> | <u>@DataSciCampus</u>

Manual labelling

nage

vegetation

	1	3	4
1		85%	84%
3	85%		87%
4	84%	87%	

Agreement matrix

vegetation in shade

Resulting labels

urban in shade

Neural network architecture

- Three layer 12:8:4 network
- Standard ReLU activation units
- Output softmax activation units
- 12 features
 - Red, green, blue and infra-red spectral channels
 - Monochromatic principal component with first component removed
 - Three brightness principal components with first component removed
 - Three colour principal components with first component removed
- 4 Outputs, probability pixel is
 - Vegetation
 - Vegetation in shade
 - Urban in shade
 - None of the above

Isolate and remove shadows

{R, G, B}

 $\{R, G, B\} \rightarrow PC1$

 $\{R, G, B\} \rightarrow \{PC1, PC2\}$

Neural network classifier - results

Classifier corrected our mistakes!

Neural network classifier - results

60%

Classification error across labelled images

Sample results

Cardiff

13.4km² garden area 53.9% vegetation

41.9km² garden area 45.0% vegetation

Deployment and next steps

- Model deployed within a Python pipeline
- Run time for entire UK just over a day
 - Two-core virtual machine hosted on a Xeon E5-2650 @ 2.20GHz; 4Gb of memory
- Code available on GitHub

Potential developments

- Look at temporal trends
- Don't treat pixels in isolation (consider local neighbours)
- Account for weather conditions and seasonality
- Expand classification to identify specific types of organic material
- Deployment on the cloud