

Images and visualisation

Statistics Netherlands (CBS)

Edwin de Jonge

December 17, 2019

Images and visualisation

Sight is the largest and fastest perceptual input channel to our brain.

This makes consuming and generating visual images interesting as:

- a data source
- medium for analysis and communication.

Image as data source

3 cases at CBS / Statistics Netherlands

Train CNN / Deeplearning model for:

- CPI article classification of Web Shop
- Land Use Statistics
- Solar Energy production

Hm.com / Dames / Rokken

Nieuwe items

Kleding Schoenen & accessoires Beauty

Trending now

The Holiday Gift Shop Most wanted

Shop op item

Bekijk alle items Jacks & Jassen Knitwear

Vesten & Truien

Jurken

Tops

Overhemden & Blouses

Blazers

Basics

Broeken

Jeans

Jumpsuits & Playsuits

Midirok met pailletten

€ 39.99

Rokken

Korte rokken

Midirokken

Maxirokken

Kokerrok Spiikerrok

Jacquardgeweven rok

€ 39.99

A-linerok

€ 19,99

5

CPI image classification

Statistics Netherlands uses web scraping for CPI:

- Cloathing Web Shops contains > 100.000 articles
- Use Text to classify articles
- Experimented with classification image to improve classifier.

Outcome: Text classification is good (enough). Image by itself is worse, combination would give (slight) improvement

Case 2: Land Use Classification

 Land Use Statistics use areal photo's to manually classify/derive land use (> 40 categories). Idea: use deeplearning to speed up the process. (currently 3 years...)

- Automatic Classifier (CNN) has accuracy > 90% for large categories, but not good enough to do everything automatically
- Current research: detect land use changes, so manual task takes much less time.

Energy from Solar Panels

Use aerial photo's to detect solar panels, as input for solar energy production estimation.

Current status:

- Basic classification working (CNN), improving labelling of dataset by creating annotation tool.

Data Science en Visualisation?

Excellent tool for both analysis and communication:

Numerical quantities focus on expected values, graphical summaries on unexpected values.

John Tukey

Anscombe's quartet

Datas	set 1	Data	set 2	Data	iset 3	Date	aset 4
x	У	x	У	×	у	x	у
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
13 7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Statistical measure	value
Mean of x1, x2, x3, x4	Same: 9
Variance of x1, x2, x3, x4	Same: 11
Mean of y1, y2, y3, y4	Same: 7.50
Variance of y1, y2, y3, y4	Same: 4.1
Correlatie of ds1, ds2, ds3, ds4	Same 0.816
Linear regression ds1, ds2, ds3, ds4	Same: y = 3.00 + 0.500x

Let's plot!

Uncertainty visualisation

What is not surrounded by uncertainty cannot be the truth,

Richard Feynman

For official statistics, at least two reasons useful:

- Communicating accuracy
- Statistical/stochastic uncertainty

Let's view two cases of stats NL (CBS)

Diabetes incidence

 Based on a (large) health survey of statistics netherlands (CBS)

Verkeersdoden

빌

e

mount

mount

Case 2: Stochastic uncertainty

User Studies show:

Non-expert users can read probability intervals! The perception of visual uncertainty representation by non-experts Tak, Toet, van Erp, *Transactions Visualisation and computer Graphics*, 2014

displaying uncertainty improves data assessment Effect of displaying uncertainty in Line and Bar charts, Van der Laan, de Jonge, Solcer, IVAPP, 2015

Uncertainty Viz (density)

Uncert, inty in what US super ipla man, will all 1 ay 1019: C untir up is encluding:

Uncertainty Viz (density)

US unemployment over time

Matthew Kay and Jessica Hullman (2019)

COMUNIKOS

COMUNIKOS: Eurostat project

- Goal: guidelines in COMmunicating Uncertain Knowledge in Official Statistics

Tasks:

- Describe possible sources of uncertainty
- Visualisation Guidelines
- Methods for calculating uncertainty measures
- POC on Scanner Data

